MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofres Structured version   Visualization version   Unicode version

Theorem ofres 6913
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
ofres.1  |-  ( ph  ->  F  Fn  A )
ofres.2  |-  ( ph  ->  G  Fn  B )
ofres.3  |-  ( ph  ->  A  e.  V )
ofres.4  |-  ( ph  ->  B  e.  W )
ofres.5  |-  ( A  i^i  B )  =  C
Assertion
Ref Expression
ofres  |-  ( ph  ->  ( F  oF R G )  =  ( ( F  |`  C )  oF R ( G  |`  C ) ) )

Proof of Theorem ofres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ofres.1 . . 3  |-  ( ph  ->  F  Fn  A )
2 ofres.2 . . 3  |-  ( ph  ->  G  Fn  B )
3 ofres.3 . . 3  |-  ( ph  ->  A  e.  V )
4 ofres.4 . . 3  |-  ( ph  ->  B  e.  W )
5 ofres.5 . . 3  |-  ( A  i^i  B )  =  C
6 eqidd 2623 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2623 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7offval 6904 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  C  |->  ( ( F `  x ) R ( G `  x ) ) ) )
9 inss1 3833 . . . . 5  |-  ( A  i^i  B )  C_  A
105, 9eqsstr3i 3636 . . . 4  |-  C  C_  A
11 fnssres 6004 . . . 4  |-  ( ( F  Fn  A  /\  C  C_  A )  -> 
( F  |`  C )  Fn  C )
121, 10, 11sylancl 694 . . 3  |-  ( ph  ->  ( F  |`  C )  Fn  C )
13 inss2 3834 . . . . 5  |-  ( A  i^i  B )  C_  B
145, 13eqsstr3i 3636 . . . 4  |-  C  C_  B
15 fnssres 6004 . . . 4  |-  ( ( G  Fn  B  /\  C  C_  B )  -> 
( G  |`  C )  Fn  C )
162, 14, 15sylancl 694 . . 3  |-  ( ph  ->  ( G  |`  C )  Fn  C )
17 ssexg 4804 . . . 4  |-  ( ( C  C_  A  /\  A  e.  V )  ->  C  e.  _V )
1810, 3, 17sylancr 695 . . 3  |-  ( ph  ->  C  e.  _V )
19 inidm 3822 . . 3  |-  ( C  i^i  C )  =  C
20 fvres 6207 . . . 4  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
2120adantl 482 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
22 fvres 6207 . . . 4  |-  ( x  e.  C  ->  (
( G  |`  C ) `
 x )  =  ( G `  x
) )
2322adantl 482 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( G  |`  C ) `
 x )  =  ( G `  x
) )
2412, 16, 18, 18, 19, 21, 23offval 6904 . 2  |-  ( ph  ->  ( ( F  |`  C )  oF R ( G  |`  C ) )  =  ( x  e.  C  |->  ( ( F `  x ) R ( G `  x ) ) ) )
258, 24eqtr4d 2659 1  |-  ( ph  ->  ( F  oF R G )  =  ( ( F  |`  C )  oF R ( G  |`  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574    |-> cmpt 4729    |` cres 5116    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    oFcof 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator