| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabresex2d | Structured version Visualization version Unicode version | ||
| Description: Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) |
| Ref | Expression |
|---|---|
| opabresex2d.1 |
|
| opabresex2d.2 |
|
| Ref | Expression |
|---|---|
| opabresex2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresex2d.1 |
. . . 4
| |
| 2 | 1 | ex 450 |
. . 3
|
| 3 | 2 | alrimivv 1856 |
. 2
|
| 4 | opabresex2d.2 |
. 2
| |
| 5 | opabbrex 6695 |
. 2
| |
| 6 | 3, 4, 5 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-opab 4713 |
| This theorem is referenced by: mptmpt2opabbrd 7248 |
| Copyright terms: Public domain | W3C validator |