MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabresex2d Structured version   Visualization version   Unicode version

Theorem opabresex2d 6696
Description: Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.)
Hypotheses
Ref Expression
opabresex2d.1  |-  ( (
ph  /\  x ( W `  G )
y )  ->  ps )
opabresex2d.2  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  e.  V )
Assertion
Ref Expression
opabresex2d  |-  ( ph  ->  { <. x ,  y
>.  |  ( x
( W `  G
) y  /\  th ) }  e.  _V )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    th( x, y)    G( x, y)    V( x, y)    W( x, y)

Proof of Theorem opabresex2d
StepHypRef Expression
1 opabresex2d.1 . . . 4  |-  ( (
ph  /\  x ( W `  G )
y )  ->  ps )
21ex 450 . . 3  |-  ( ph  ->  ( x ( W `
 G ) y  ->  ps ) )
32alrimivv 1856 . 2  |-  ( ph  ->  A. x A. y
( x ( W `
 G ) y  ->  ps ) )
4 opabresex2d.2 . 2  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  e.  V )
5 opabbrex 6695 . 2  |-  ( ( A. x A. y
( x ( W `
 G ) y  ->  ps )  /\  {
<. x ,  y >.  |  ps }  e.  V
)  ->  { <. x ,  y >.  |  ( x ( W `  G ) y  /\  th ) }  e.  _V )
63, 4, 5syl2anc 693 1  |-  ( ph  ->  { <. x ,  y
>.  |  ( x
( W `  G
) y  /\  th ) }  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   {copab 4712   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-opab 4713
This theorem is referenced by:  mptmpt2opabbrd  7248
  Copyright terms: Public domain W3C validator