MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptmpt2opabbrd Structured version   Visualization version   Unicode version

Theorem mptmpt2opabbrd 7248
Description: The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.)
Hypotheses
Ref Expression
mptmpt2opabbrd.g  |-  ( ph  ->  G  e.  W )
mptmpt2opabbrd.x  |-  ( ph  ->  X  e.  ( A `
 G ) )
mptmpt2opabbrd.y  |-  ( ph  ->  Y  e.  ( B `
 G ) )
mptmpt2opabbrd.v  |-  ( ph  ->  { <. f ,  h >.  |  ps }  e.  V )
mptmpt2opabbrd.r  |-  ( (
ph  /\  f ( D `  G )
h )  ->  ps )
mptmpt2opabbrd.1  |-  ( ( a  =  X  /\  b  =  Y )  ->  ( ta  <->  th )
)
mptmpt2opabbrd.2  |-  ( g  =  G  ->  ( ch 
<->  ta ) )
mptmpt2opabbrd.m  |-  M  =  ( g  e.  _V  |->  ( a  e.  ( A `  g ) ,  b  e.  ( B `  g ) 
|->  { <. f ,  h >.  |  ( ch  /\  f ( D `  g ) h ) } ) )
Assertion
Ref Expression
mptmpt2opabbrd  |-  ( ph  ->  ( X ( M `
 G ) Y )  =  { <. f ,  h >.  |  ( th  /\  f ( D `  G ) h ) } )
Distinct variable groups:    A, a,
b, g    B, a,
b, g    D, a,
b, g    G, a,
b, f, g, h   
g, W    X, a,
b, f, g, h    Y, a, b, f, g, h    ph, f, h    ta, g    th, a, b
Allowed substitution hints:    ph( g, a, b)    ps( f, g, h, a, b)    ch( f,
g, h, a, b)    th( f, g, h)    ta( f, h, a, b)    A( f, h)    B( f, h)    D( f, h)    M( f,
g, h, a, b)    V( f, g, h, a, b)    W( f, h, a, b)

Proof of Theorem mptmpt2opabbrd
StepHypRef Expression
1 mptmpt2opabbrd.g . . . 4  |-  ( ph  ->  G  e.  W )
2 mptmpt2opabbrd.m . . . . . 6  |-  M  =  ( g  e.  _V  |->  ( a  e.  ( A `  g ) ,  b  e.  ( B `  g ) 
|->  { <. f ,  h >.  |  ( ch  /\  f ( D `  g ) h ) } ) )
32a1i 11 . . . . 5  |-  ( ( G  e.  W  /\  G  e.  W )  ->  M  =  ( g  e.  _V  |->  ( a  e.  ( A `  g ) ,  b  e.  ( B `  g )  |->  { <. f ,  h >.  |  ( ch  /\  f ( D `  g ) h ) } ) ) )
4 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  ( A `  g )  =  ( A `  G ) )
5 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  ( B `  g )  =  ( B `  G ) )
6 mptmpt2opabbrd.2 . . . . . . . . 9  |-  ( g  =  G  ->  ( ch 
<->  ta ) )
7 fveq2 6191 . . . . . . . . . 10  |-  ( g  =  G  ->  ( D `  g )  =  ( D `  G ) )
87breqd 4664 . . . . . . . . 9  |-  ( g  =  G  ->  (
f ( D `  g ) h  <->  f ( D `  G )
h ) )
96, 8anbi12d 747 . . . . . . . 8  |-  ( g  =  G  ->  (
( ch  /\  f
( D `  g
) h )  <->  ( ta  /\  f ( D `  G ) h ) ) )
109opabbidv 4716 . . . . . . 7  |-  ( g  =  G  ->  { <. f ,  h >.  |  ( ch  /\  f ( D `  g ) h ) }  =  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) } )
114, 5, 10mpt2eq123dv 6717 . . . . . 6  |-  ( g  =  G  ->  (
a  e.  ( A `
 g ) ,  b  e.  ( B `
 g )  |->  {
<. f ,  h >.  |  ( ch  /\  f
( D `  g
) h ) } )  =  ( a  e.  ( A `  G ) ,  b  e.  ( B `  G )  |->  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) } ) )
1211adantl 482 . . . . 5  |-  ( ( ( G  e.  W  /\  G  e.  W
)  /\  g  =  G )  ->  (
a  e.  ( A `
 g ) ,  b  e.  ( B `
 g )  |->  {
<. f ,  h >.  |  ( ch  /\  f
( D `  g
) h ) } )  =  ( a  e.  ( A `  G ) ,  b  e.  ( B `  G )  |->  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) } ) )
13 elex 3212 . . . . . 6  |-  ( G  e.  W  ->  G  e.  _V )
1413adantr 481 . . . . 5  |-  ( ( G  e.  W  /\  G  e.  W )  ->  G  e.  _V )
15 fvex 6201 . . . . . . 7  |-  ( A `
 G )  e. 
_V
16 fvex 6201 . . . . . . 7  |-  ( B `
 G )  e. 
_V
1715, 16pm3.2i 471 . . . . . 6  |-  ( ( A `  G )  e.  _V  /\  ( B `  G )  e.  _V )
18 mpt2exga 7246 . . . . . 6  |-  ( ( ( A `  G
)  e.  _V  /\  ( B `  G )  e.  _V )  -> 
( a  e.  ( A `  G ) ,  b  e.  ( B `  G ) 
|->  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) } )  e.  _V )
1917, 18mp1i 13 . . . . 5  |-  ( ( G  e.  W  /\  G  e.  W )  ->  ( a  e.  ( A `  G ) ,  b  e.  ( B `  G ) 
|->  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) } )  e.  _V )
203, 12, 14, 19fvmptd 6288 . . . 4  |-  ( ( G  e.  W  /\  G  e.  W )  ->  ( M `  G
)  =  ( a  e.  ( A `  G ) ,  b  e.  ( B `  G )  |->  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) } ) )
211, 1, 20syl2anc 693 . . 3  |-  ( ph  ->  ( M `  G
)  =  ( a  e.  ( A `  G ) ,  b  e.  ( B `  G )  |->  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) } ) )
2221oveqd 6667 . 2  |-  ( ph  ->  ( X ( M `
 G ) Y )  =  ( X ( a  e.  ( A `  G ) ,  b  e.  ( B `  G ) 
|->  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) } ) Y ) )
23 mptmpt2opabbrd.x . . 3  |-  ( ph  ->  X  e.  ( A `
 G ) )
24 mptmpt2opabbrd.y . . 3  |-  ( ph  ->  Y  e.  ( B `
 G ) )
25 ancom 466 . . . . 5  |-  ( ( th  /\  f ( D `  G ) h )  <->  ( f
( D `  G
) h  /\  th ) )
2625opabbii 4717 . . . 4  |-  { <. f ,  h >.  |  ( th  /\  f ( D `  G ) h ) }  =  { <. f ,  h >.  |  ( f ( D `  G ) h  /\  th ) }
27 mptmpt2opabbrd.r . . . . 5  |-  ( (
ph  /\  f ( D `  G )
h )  ->  ps )
28 mptmpt2opabbrd.v . . . . 5  |-  ( ph  ->  { <. f ,  h >.  |  ps }  e.  V )
2927, 28opabresex2d 6696 . . . 4  |-  ( ph  ->  { <. f ,  h >.  |  ( f ( D `  G ) h  /\  th ) }  e.  _V )
3026, 29syl5eqel 2705 . . 3  |-  ( ph  ->  { <. f ,  h >.  |  ( th  /\  f ( D `  G ) h ) }  e.  _V )
31 mptmpt2opabbrd.1 . . . . . 6  |-  ( ( a  =  X  /\  b  =  Y )  ->  ( ta  <->  th )
)
3231anbi1d 741 . . . . 5  |-  ( ( a  =  X  /\  b  =  Y )  ->  ( ( ta  /\  f ( D `  G ) h )  <-> 
( th  /\  f
( D `  G
) h ) ) )
3332opabbidv 4716 . . . 4  |-  ( ( a  =  X  /\  b  =  Y )  ->  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) }  =  { <. f ,  h >.  |  ( th  /\  f ( D `  G ) h ) } )
34 eqid 2622 . . . 4  |-  ( a  e.  ( A `  G ) ,  b  e.  ( B `  G )  |->  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) } )  =  ( a  e.  ( A `  G
) ,  b  e.  ( B `  G
)  |->  { <. f ,  h >.  |  ( ta  /\  f ( D `
 G ) h ) } )
3533, 34ovmpt2ga 6790 . . 3  |-  ( ( X  e.  ( A `
 G )  /\  Y  e.  ( B `  G )  /\  { <. f ,  h >.  |  ( th  /\  f
( D `  G
) h ) }  e.  _V )  -> 
( X ( a  e.  ( A `  G ) ,  b  e.  ( B `  G )  |->  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) } ) Y )  =  { <. f ,  h >.  |  ( th  /\  f
( D `  G
) h ) } )
3623, 24, 30, 35syl3anc 1326 . 2  |-  ( ph  ->  ( X ( a  e.  ( A `  G ) ,  b  e.  ( B `  G )  |->  { <. f ,  h >.  |  ( ta  /\  f ( D `  G ) h ) } ) Y )  =  { <. f ,  h >.  |  ( th  /\  f
( D `  G
) h ) } )
3722, 36eqtrd 2656 1  |-  ( ph  ->  ( X ( M `
 G ) Y )  =  { <. f ,  h >.  |  ( th  /\  f ( D `  G ) h ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   {copab 4712    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  mptmpt2opabovd  7249  wlkson  26552
  Copyright terms: Public domain W3C validator