| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptmpt2opabbrd | Structured version Visualization version Unicode version | ||
| Description: The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) |
| Ref | Expression |
|---|---|
| mptmpt2opabbrd.g |
|
| mptmpt2opabbrd.x |
|
| mptmpt2opabbrd.y |
|
| mptmpt2opabbrd.v |
|
| mptmpt2opabbrd.r |
|
| mptmpt2opabbrd.1 |
|
| mptmpt2opabbrd.2 |
|
| mptmpt2opabbrd.m |
|
| Ref | Expression |
|---|---|
| mptmpt2opabbrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptmpt2opabbrd.g |
. . . 4
| |
| 2 | mptmpt2opabbrd.m |
. . . . . 6
| |
| 3 | 2 | a1i 11 |
. . . . 5
|
| 4 | fveq2 6191 |
. . . . . . 7
| |
| 5 | fveq2 6191 |
. . . . . . 7
| |
| 6 | mptmpt2opabbrd.2 |
. . . . . . . . 9
| |
| 7 | fveq2 6191 |
. . . . . . . . . 10
| |
| 8 | 7 | breqd 4664 |
. . . . . . . . 9
|
| 9 | 6, 8 | anbi12d 747 |
. . . . . . . 8
|
| 10 | 9 | opabbidv 4716 |
. . . . . . 7
|
| 11 | 4, 5, 10 | mpt2eq123dv 6717 |
. . . . . 6
|
| 12 | 11 | adantl 482 |
. . . . 5
|
| 13 | elex 3212 |
. . . . . 6
| |
| 14 | 13 | adantr 481 |
. . . . 5
|
| 15 | fvex 6201 |
. . . . . . 7
| |
| 16 | fvex 6201 |
. . . . . . 7
| |
| 17 | 15, 16 | pm3.2i 471 |
. . . . . 6
|
| 18 | mpt2exga 7246 |
. . . . . 6
| |
| 19 | 17, 18 | mp1i 13 |
. . . . 5
|
| 20 | 3, 12, 14, 19 | fvmptd 6288 |
. . . 4
|
| 21 | 1, 1, 20 | syl2anc 693 |
. . 3
|
| 22 | 21 | oveqd 6667 |
. 2
|
| 23 | mptmpt2opabbrd.x |
. . 3
| |
| 24 | mptmpt2opabbrd.y |
. . 3
| |
| 25 | ancom 466 |
. . . . 5
| |
| 26 | 25 | opabbii 4717 |
. . . 4
|
| 27 | mptmpt2opabbrd.r |
. . . . 5
| |
| 28 | mptmpt2opabbrd.v |
. . . . 5
| |
| 29 | 27, 28 | opabresex2d 6696 |
. . . 4
|
| 30 | 26, 29 | syl5eqel 2705 |
. . 3
|
| 31 | mptmpt2opabbrd.1 |
. . . . . 6
| |
| 32 | 31 | anbi1d 741 |
. . . . 5
|
| 33 | 32 | opabbidv 4716 |
. . . 4
|
| 34 | eqid 2622 |
. . . 4
| |
| 35 | 33, 34 | ovmpt2ga 6790 |
. . 3
|
| 36 | 23, 24, 30, 35 | syl3anc 1326 |
. 2
|
| 37 | 22, 36 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: mptmpt2opabovd 7249 wlkson 26552 |
| Copyright terms: Public domain | W3C validator |