| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptopab | Structured version Visualization version Unicode version | ||
| Description: The function value of a
mapping |
| Ref | Expression |
|---|---|
| fvmptopab.1 |
|
| fvmptopab.2 |
|
| fvmptopab.3 |
|
| Ref | Expression |
|---|---|
| fvmptopab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptopab.3 |
. . . . 5
| |
| 2 | 1 | a1i 11 |
. . . 4
|
| 3 | fveq2 6191 |
. . . . . . . 8
| |
| 4 | 3 | breqd 4664 |
. . . . . . 7
|
| 5 | 4 | adantl 482 |
. . . . . 6
|
| 6 | fvmptopab.1 |
. . . . . . 7
| |
| 7 | 6 | adantll 750 |
. . . . . 6
|
| 8 | 5, 7 | anbi12d 747 |
. . . . 5
|
| 9 | 8 | opabbidv 4716 |
. . . 4
|
| 10 | simpl 473 |
. . . 4
| |
| 11 | id 22 |
. . . . . 6
| |
| 12 | 11 | gen2 1723 |
. . . . 5
|
| 13 | fvmptopab.2 |
. . . . . 6
| |
| 14 | 13 | adantl 482 |
. . . . 5
|
| 15 | opabbrex 6695 |
. . . . 5
| |
| 16 | 12, 14, 15 | sylancr 695 |
. . . 4
|
| 17 | 2, 9, 10, 16 | fvmptd 6288 |
. . 3
|
| 18 | 17 | ex 450 |
. 2
|
| 19 | fvprc 6185 |
. . . 4
| |
| 20 | br0 4701 |
. . . . . . . 8
| |
| 21 | fvprc 6185 |
. . . . . . . . 9
| |
| 22 | 21 | breqd 4664 |
. . . . . . . 8
|
| 23 | 20, 22 | mtbiri 317 |
. . . . . . 7
|
| 24 | 23 | intnanrd 963 |
. . . . . 6
|
| 25 | 24 | alrimivv 1856 |
. . . . 5
|
| 26 | opab0 5007 |
. . . . 5
| |
| 27 | 25, 26 | sylibr 224 |
. . . 4
|
| 28 | 19, 27 | eqtr4d 2659 |
. . 3
|
| 29 | 28 | a1d 25 |
. 2
|
| 30 | 18, 29 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 |
| This theorem is referenced by: trlsfval 26592 pthsfval 26617 spthsfval 26618 clwlks 26668 crcts 26683 cycls 26684 eupths 27060 |
| Copyright terms: Public domain | W3C validator |