MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptopab Structured version   Visualization version   Unicode version

Theorem fvmptopab 6697
Description: The function value of a mapping  M to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function  F restricted by the condition 
ps. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Hypotheses
Ref Expression
fvmptopab.1  |-  ( (
ph  /\  z  =  Z )  ->  ( ch 
<->  ps ) )
fvmptopab.2  |-  ( ph  ->  { <. x ,  y
>.  |  x ( F `  Z )
y }  e.  _V )
fvmptopab.3  |-  M  =  ( z  e.  _V  |->  { <. x ,  y
>.  |  ( x
( F `  z
) y  /\  ch ) } )
Assertion
Ref Expression
fvmptopab  |-  ( ph  ->  ( M `  Z
)  =  { <. x ,  y >.  |  ( x ( F `  Z ) y  /\  ps ) } )
Distinct variable groups:    z, F    x, Z, y, z    ph, x, y, z    ps, z
Allowed substitution hints:    ps( x, y)    ch( x, y, z)    F( x, y)    M( x, y, z)

Proof of Theorem fvmptopab
StepHypRef Expression
1 fvmptopab.3 . . . . 5  |-  M  =  ( z  e.  _V  |->  { <. x ,  y
>.  |  ( x
( F `  z
) y  /\  ch ) } )
21a1i 11 . . . 4  |-  ( ( Z  e.  _V  /\  ph )  ->  M  =  ( z  e.  _V  |->  { <. x ,  y
>.  |  ( x
( F `  z
) y  /\  ch ) } ) )
3 fveq2 6191 . . . . . . . 8  |-  ( z  =  Z  ->  ( F `  z )  =  ( F `  Z ) )
43breqd 4664 . . . . . . 7  |-  ( z  =  Z  ->  (
x ( F `  z ) y  <->  x ( F `  Z )
y ) )
54adantl 482 . . . . . 6  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  z  =  Z )  ->  (
x ( F `  z ) y  <->  x ( F `  Z )
y ) )
6 fvmptopab.1 . . . . . . 7  |-  ( (
ph  /\  z  =  Z )  ->  ( ch 
<->  ps ) )
76adantll 750 . . . . . 6  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  z  =  Z )  ->  ( ch 
<->  ps ) )
85, 7anbi12d 747 . . . . 5  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  z  =  Z )  ->  (
( x ( F `
 z ) y  /\  ch )  <->  ( x
( F `  Z
) y  /\  ps ) ) )
98opabbidv 4716 . . . 4  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  z  =  Z )  ->  { <. x ,  y >.  |  ( x ( F `  z ) y  /\  ch ) }  =  { <. x ,  y >.  |  ( x ( F `  Z ) y  /\  ps ) } )
10 simpl 473 . . . 4  |-  ( ( Z  e.  _V  /\  ph )  ->  Z  e.  _V )
11 id 22 . . . . . 6  |-  ( x ( F `  Z
) y  ->  x
( F `  Z
) y )
1211gen2 1723 . . . . 5  |-  A. x A. y ( x ( F `  Z ) y  ->  x ( F `  Z )
y )
13 fvmptopab.2 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  x ( F `  Z )
y }  e.  _V )
1413adantl 482 . . . . 5  |-  ( ( Z  e.  _V  /\  ph )  ->  { <. x ,  y >.  |  x ( F `  Z
) y }  e.  _V )
15 opabbrex 6695 . . . . 5  |-  ( ( A. x A. y
( x ( F `
 Z ) y  ->  x ( F `
 Z ) y )  /\  { <. x ,  y >.  |  x ( F `  Z
) y }  e.  _V )  ->  { <. x ,  y >.  |  ( x ( F `  Z ) y  /\  ps ) }  e.  _V )
1612, 14, 15sylancr 695 . . . 4  |-  ( ( Z  e.  _V  /\  ph )  ->  { <. x ,  y >.  |  ( x ( F `  Z ) y  /\  ps ) }  e.  _V )
172, 9, 10, 16fvmptd 6288 . . 3  |-  ( ( Z  e.  _V  /\  ph )  ->  ( M `  Z )  =  { <. x ,  y >.  |  ( x ( F `  Z ) y  /\  ps ) } )
1817ex 450 . 2  |-  ( Z  e.  _V  ->  ( ph  ->  ( M `  Z )  =  { <. x ,  y >.  |  ( x ( F `  Z ) y  /\  ps ) } ) )
19 fvprc 6185 . . . 4  |-  ( -.  Z  e.  _V  ->  ( M `  Z )  =  (/) )
20 br0 4701 . . . . . . . 8  |-  -.  x (/) y
21 fvprc 6185 . . . . . . . . 9  |-  ( -.  Z  e.  _V  ->  ( F `  Z )  =  (/) )
2221breqd 4664 . . . . . . . 8  |-  ( -.  Z  e.  _V  ->  ( x ( F `  Z ) y  <->  x (/) y ) )
2320, 22mtbiri 317 . . . . . . 7  |-  ( -.  Z  e.  _V  ->  -.  x ( F `  Z ) y )
2423intnanrd 963 . . . . . 6  |-  ( -.  Z  e.  _V  ->  -.  ( x ( F `
 Z ) y  /\  ps ) )
2524alrimivv 1856 . . . . 5  |-  ( -.  Z  e.  _V  ->  A. x A. y  -.  ( x ( F `
 Z ) y  /\  ps ) )
26 opab0 5007 . . . . 5  |-  ( {
<. x ,  y >.  |  ( x ( F `  Z ) y  /\  ps ) }  =  (/)  <->  A. x A. y  -.  (
x ( F `  Z ) y  /\  ps ) )
2725, 26sylibr 224 . . . 4  |-  ( -.  Z  e.  _V  ->  {
<. x ,  y >.  |  ( x ( F `  Z ) y  /\  ps ) }  =  (/) )
2819, 27eqtr4d 2659 . . 3  |-  ( -.  Z  e.  _V  ->  ( M `  Z )  =  { <. x ,  y >.  |  ( x ( F `  Z ) y  /\  ps ) } )
2928a1d 25 . 2  |-  ( -.  Z  e.  _V  ->  (
ph  ->  ( M `  Z )  =  { <. x ,  y >.  |  ( x ( F `  Z ) y  /\  ps ) } ) )
3018, 29pm2.61i 176 1  |-  ( ph  ->  ( M `  Z
)  =  { <. x ,  y >.  |  ( x ( F `  Z ) y  /\  ps ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   {copab 4712    |-> cmpt 4729   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  trlsfval  26592  pthsfval  26617  spthsfval  26618  clwlks  26668  crcts  26683  cycls  26684  eupths  27060
  Copyright terms: Public domain W3C validator