MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orass Structured version   Visualization version   Unicode version

Theorem orass 546
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
orass  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )

Proof of Theorem orass
StepHypRef Expression
1 orcom 402 . 2  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  ( ch  \/  ( ph  \/  ps ) ) )
2 or12 545 . 2  |-  ( ( ch  \/  ( ph  \/  ps ) )  <->  ( ph  \/  ( ch  \/  ps ) ) )
3 orcom 402 . . 3  |-  ( ( ch  \/  ps )  <->  ( ps  \/  ch )
)
43orbi2i 541 . 2  |-  ( (
ph  \/  ( ch  \/  ps ) )  <->  ( ph  \/  ( ps  \/  ch ) ) )
51, 2, 43bitri 286 1  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by:  pm2.31  547  pm2.32  548  or32  549  or4  550  3orass  1040  axi12  2600  unass  3770  tppreqb  4336  ltxr  11949  lcmass  15327  plydivex  24052  disjxpin  29401  impor  33880  ifpim123g  37845
  Copyright terms: Public domain W3C validator