| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltxr | Structured version Visualization version Unicode version | ||
| Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq12 4658 |
. . . . 5
| |
| 2 | df-3an 1039 |
. . . . . 6
| |
| 3 | 2 | opabbii 4717 |
. . . . 5
|
| 4 | 1, 3 | brab2a 5194 |
. . . 4
|
| 5 | 4 | a1i 11 |
. . 3
|
| 6 | brun 4703 |
. . . 4
| |
| 7 | brxp 5147 |
. . . . . . 7
| |
| 8 | elun 3753 |
. . . . . . . . . . 11
| |
| 9 | orcom 402 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | bitri 264 |
. . . . . . . . . 10
|
| 11 | elsng 4191 |
. . . . . . . . . . 11
| |
| 12 | 11 | orbi1d 739 |
. . . . . . . . . 10
|
| 13 | 10, 12 | syl5bb 272 |
. . . . . . . . 9
|
| 14 | elsng 4191 |
. . . . . . . . 9
| |
| 15 | 13, 14 | bi2anan9 917 |
. . . . . . . 8
|
| 16 | andir 912 |
. . . . . . . 8
| |
| 17 | 15, 16 | syl6bb 276 |
. . . . . . 7
|
| 18 | 7, 17 | syl5bb 272 |
. . . . . 6
|
| 19 | brxp 5147 |
. . . . . . 7
| |
| 20 | 11 | anbi1d 741 |
. . . . . . . 8
|
| 21 | 20 | adantr 481 |
. . . . . . 7
|
| 22 | 19, 21 | syl5bb 272 |
. . . . . 6
|
| 23 | 18, 22 | orbi12d 746 |
. . . . 5
|
| 24 | orass 546 |
. . . . 5
| |
| 25 | 23, 24 | syl6bb 276 |
. . . 4
|
| 26 | 6, 25 | syl5bb 272 |
. . 3
|
| 27 | 5, 26 | orbi12d 746 |
. 2
|
| 28 | df-ltxr 10079 |
. . . 4
| |
| 29 | 28 | breqi 4659 |
. . 3
|
| 30 | brun 4703 |
. . 3
| |
| 31 | 29, 30 | bitri 264 |
. 2
|
| 32 | orass 546 |
. 2
| |
| 33 | 27, 31, 32 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-ltxr 10079 |
| This theorem is referenced by: xrltnr 11953 ltpnf 11954 mnflt 11957 mnfltpnf 11960 pnfnlt 11962 nltmnf 11963 |
| Copyright terms: Public domain | W3C validator |