MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmass Structured version   Visualization version   Unicode version

Theorem lcmass 15327
Description: Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmass  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  ( N lcm  ( M lcm  P
) ) )

Proof of Theorem lcmass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 orass 546 . . 3  |-  ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 )  <->  ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) )
2 anass 681 . . . . . 6  |-  ( ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x
)  <->  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) )
32a1i 11 . . . . 5  |-  ( x  e.  NN  ->  (
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
)  <->  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) ) )
43rabbiia 3185 . . . 4  |-  { x  e.  NN  |  ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x ) }  =  { x  e.  NN  |  ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) ) }
54infeq1i 8384 . . 3  |- inf ( { x  e.  NN  | 
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
) } ,  RR ,  <  )  = inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) } ,  RR ,  <  )
61, 5ifbieq2i 4110 . 2  |-  if ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  | 
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
) } ,  RR ,  <  ) )  =  if ( ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ,  0 , inf ( { x  e.  NN  |  ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) ) } ,  RR ,  <  ) )
7 lcmcl 15314 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N lcm  M )  e.  NN0 )
873adant3 1081 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  M )  e.  NN0 )
98nn0zd 11480 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  M )  e.  ZZ )
10 simp3 1063 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  P  e.  ZZ )
11 lcmval 15305 . . . 4  |-  ( ( ( N lcm  M )  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  if ( ( ( N lcm 
M )  =  0  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N lcm  M )  ||  x  /\  P  ||  x
) } ,  RR ,  <  ) ) )
129, 10, 11syl2anc 693 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  if ( ( ( N lcm 
M )  =  0  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N lcm  M )  ||  x  /\  P  ||  x
) } ,  RR ,  <  ) ) )
13 lcmeq0 15313 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N lcm  M
)  =  0  <->  ( N  =  0  \/  M  =  0 ) ) )
14133adant3 1081 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M )  =  0  <->  ( N  =  0  \/  M  =  0 ) ) )
1514orbi1d 739 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N lcm  M
)  =  0  \/  P  =  0 )  <-> 
( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ) )
1615bicomd 213 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N  =  0  \/  M  =  0 )  \/  P  =  0 )  <->  ( ( N lcm  M )  =  0  \/  P  =  0 ) ) )
17 nnz 11399 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  ZZ )
1817adantl 482 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  x  e.  ZZ )
19 simp1 1061 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  N  e.  ZZ )
2019adantr 481 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  N  e.  ZZ )
21 simpl2 1065 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  M  e.  ZZ )
22 lcmdvdsb 15326 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  ||  x  /\  M  ||  x )  <-> 
( N lcm  M ) 
||  x ) )
2318, 20, 21, 22syl3anc 1326 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( N 
||  x  /\  M  ||  x )  <->  ( N lcm  M )  ||  x ) )
2423anbi1d 741 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x )  <->  ( ( N lcm  M )  ||  x  /\  P  ||  x ) ) )
2524rabbidva 3188 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  NN  |  ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x ) }  =  { x  e.  NN  |  ( ( N lcm  M )  ||  x  /\  P  ||  x
) } )
2625infeq1d 8383 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  -> inf ( { x  e.  NN  | 
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
) } ,  RR ,  <  )  = inf ( { x  e.  NN  |  ( ( N lcm 
M )  ||  x  /\  P  ||  x ) } ,  RR ,  <  ) )
2716, 26ifbieq2d 4111 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N 
||  x  /\  M  ||  x )  /\  P  ||  x ) } ,  RR ,  <  ) )  =  if ( ( ( N lcm  M )  =  0  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  | 
( ( N lcm  M
)  ||  x  /\  P  ||  x ) } ,  RR ,  <  ) ) )
2812, 27eqtr4d 2659 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  if ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N 
||  x  /\  M  ||  x )  /\  P  ||  x ) } ,  RR ,  <  ) ) )
29 lcmcl 15314 . . . . . 6  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M lcm  P )  e.  NN0 )
30293adant1 1079 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M lcm  P )  e.  NN0 )
3130nn0zd 11480 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M lcm  P )  e.  ZZ )
32 lcmval 15305 . . . 4  |-  ( ( N  e.  ZZ  /\  ( M lcm  P )  e.  ZZ )  ->  ( N lcm  ( M lcm  P ) )  =  if ( ( N  =  0  \/  ( M lcm  P
)  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M lcm  P
)  ||  x ) } ,  RR ,  <  ) ) )
3319, 31, 32syl2anc 693 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  ( M lcm  P ) )  =  if ( ( N  =  0  \/  ( M lcm  P
)  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M lcm  P
)  ||  x ) } ,  RR ,  <  ) ) )
34 lcmeq0 15313 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( M lcm  P
)  =  0  <->  ( M  =  0  \/  P  =  0 ) ) )
35343adant1 1079 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( M lcm  P )  =  0  <->  ( M  =  0  \/  P  =  0 ) ) )
3635orbi2d 738 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  \/  ( M lcm  P
)  =  0 )  <-> 
( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ) )
3736bicomd 213 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  \/  ( M  =  0  \/  P  =  0 ) )  <->  ( N  =  0  \/  ( M lcm  P )  =  0 ) ) )
3810adantr 481 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  P  e.  ZZ )
39 lcmdvdsb 15326 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( M  ||  x  /\  P  ||  x )  <-> 
( M lcm  P ) 
||  x ) )
4018, 21, 38, 39syl3anc 1326 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( M 
||  x  /\  P  ||  x )  <->  ( M lcm  P )  ||  x ) )
4140anbi2d 740 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) )  <->  ( N  ||  x  /\  ( M lcm 
P )  ||  x
) ) )
4241rabbidva 3188 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  NN  |  ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) ) }  =  { x  e.  NN  |  ( N 
||  x  /\  ( M lcm  P )  ||  x
) } )
4342infeq1d 8383 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  -> inf ( { x  e.  NN  | 
( N  ||  x  /\  ( M  ||  x  /\  P  ||  x ) ) } ,  RR ,  <  )  = inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M lcm  P
)  ||  x ) } ,  RR ,  <  ) )
4437, 43ifbieq2d 4111 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ,  0 , inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) } ,  RR ,  <  ) )  =  if ( ( N  =  0  \/  ( M lcm  P )  =  0 ) ,  0 , inf ( { x  e.  NN  | 
( N  ||  x  /\  ( M lcm  P ) 
||  x ) } ,  RR ,  <  ) ) )
4533, 44eqtr4d 2659 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  ( M lcm  P ) )  =  if ( ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ,  0 , inf ( { x  e.  NN  | 
( N  ||  x  /\  ( M  ||  x  /\  P  ||  x ) ) } ,  RR ,  <  ) ) )
466, 28, 453eqtr4a 2682 1  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  ( N lcm  ( M lcm  P
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   ifcif 4086   class class class wbr 4653  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936    < clt 10074   NNcn 11020   NN0cn0 11292   ZZcz 11377    || cdvds 14983   lcm clcm 15301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-lcm 15303
This theorem is referenced by:  lcmfunsnlem2lem2  15352  lcmfun  15358
  Copyright terms: Public domain W3C validator