MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  or32 Structured version   Visualization version   Unicode version

Theorem or32 549
Description: A rearrangement of disjuncts. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
or32  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  ( ( ph  \/  ch )  \/  ps )
)

Proof of Theorem or32
StepHypRef Expression
1 orass 546 . 2  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )
2 or12 545 . 2  |-  ( (
ph  \/  ( ps  \/  ch ) )  <->  ( ps  \/  ( ph  \/  ch ) ) )
3 orcom 402 . 2  |-  ( ( ps  \/  ( ph  \/  ch ) )  <->  ( ( ph  \/  ch )  \/ 
ps ) )
41, 2, 33bitri 286 1  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  ( ( ph  \/  ch )  \/  ps )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by:  sspsstri  3709  somo  5069  ordtri3OLD  5760  psslinpr  9853  xrnepnf  11952  xrinfmss  12140  tosso  17036  lineunray  32254  or32dd  33896
  Copyright terms: Public domain W3C validator