| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ov2gf | Structured version Visualization version Unicode version | ||
| Description: The value of an operation class abstraction. A version of ovmpt2g 6795 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| ov2gf.a |
|
| ov2gf.c |
|
| ov2gf.d |
|
| ov2gf.1 |
|
| ov2gf.2 |
|
| ov2gf.3 |
|
| ov2gf.4 |
|
| ov2gf.5 |
|
| Ref | Expression |
|---|---|
| ov2gf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. . 3
| |
| 2 | ov2gf.a |
. . . 4
| |
| 3 | ov2gf.c |
. . . 4
| |
| 4 | ov2gf.d |
. . . 4
| |
| 5 | ov2gf.1 |
. . . . . 6
| |
| 6 | 5 | nfel1 2779 |
. . . . 5
|
| 7 | ov2gf.5 |
. . . . . . . 8
| |
| 8 | nfmpt21 6722 |
. . . . . . . 8
| |
| 9 | 7, 8 | nfcxfr 2762 |
. . . . . . 7
|
| 10 | nfcv 2764 |
. . . . . . 7
| |
| 11 | 2, 9, 10 | nfov 6676 |
. . . . . 6
|
| 12 | 11, 5 | nfeq 2776 |
. . . . 5
|
| 13 | 6, 12 | nfim 1825 |
. . . 4
|
| 14 | ov2gf.2 |
. . . . . 6
| |
| 15 | 14 | nfel1 2779 |
. . . . 5
|
| 16 | nfmpt22 6723 |
. . . . . . . 8
| |
| 17 | 7, 16 | nfcxfr 2762 |
. . . . . . 7
|
| 18 | 3, 17, 4 | nfov 6676 |
. . . . . 6
|
| 19 | 18, 14 | nfeq 2776 |
. . . . 5
|
| 20 | 15, 19 | nfim 1825 |
. . . 4
|
| 21 | ov2gf.3 |
. . . . . 6
| |
| 22 | 21 | eleq1d 2686 |
. . . . 5
|
| 23 | oveq1 6657 |
. . . . . 6
| |
| 24 | 23, 21 | eqeq12d 2637 |
. . . . 5
|
| 25 | 22, 24 | imbi12d 334 |
. . . 4
|
| 26 | ov2gf.4 |
. . . . . 6
| |
| 27 | 26 | eleq1d 2686 |
. . . . 5
|
| 28 | oveq2 6658 |
. . . . . 6
| |
| 29 | 28, 26 | eqeq12d 2637 |
. . . . 5
|
| 30 | 27, 29 | imbi12d 334 |
. . . 4
|
| 31 | 7 | ovmpt4g 6783 |
. . . . 5
|
| 32 | 31 | 3expia 1267 |
. . . 4
|
| 33 | 2, 3, 4, 13, 20, 25, 30, 32 | vtocl2gaf 3273 |
. . 3
|
| 34 | 1, 33 | syl5 34 |
. 2
|
| 35 | 34 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |