MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.1 Structured version   Visualization version   Unicode version

Theorem pm2.1 433
Description: Theorem *2.1 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Assertion
Ref Expression
pm2.1  |-  ( -. 
ph  \/  ph )

Proof of Theorem pm2.1
StepHypRef Expression
1 id 22 . 2  |-  ( ph  ->  ph )
21imori 429 1  |-  ( -. 
ph  \/  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by:  lelttric  10144  hashbclem  13236  maducoeval2  20446  hiidge0  27955  xrlelttric  29517  nofv  31810  bj-ismooredr2  33065  wl-orel12  33294  ifpdfor2  37805  en3lpVD  39080
  Copyright terms: Public domain W3C validator