Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrlelttric Structured version   Visualization version   Unicode version

Theorem xrlelttric 29517
Description: Trichotomy law for extended reals. (Contributed by Thierry Arnoux, 12-Sep-2017.)
Assertion
Ref Expression
xrlelttric  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  \/  B  <  A ) )

Proof of Theorem xrlelttric
StepHypRef Expression
1 pm2.1 433 . 2  |-  ( -.  B  <  A  \/  B  <  A )
2 xrlenlt 10103 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
32orbi1d 739 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  <_  B  \/  B  <  A )  <-> 
( -.  B  < 
A  \/  B  < 
A ) ) )
41, 3mpbiri 248 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  \/  B  <  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    e. wcel 1990   class class class wbr 4653   RR*cxr 10073    < clt 10074    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-le 10080
This theorem is referenced by:  difioo  29544  esumpcvgval  30140
  Copyright terms: Public domain W3C validator