| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relexp0eq | Structured version Visualization version Unicode version | ||
| Description: The zeroth power of relationships is the same if and only if the union of their domain and ranges is the same. (Contributed by RP, 11-Jun-2020.) |
| Ref | Expression |
|---|---|
| relexp0eq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relexp0g 13762 |
. . 3
| |
| 2 | relexp0g 13762 |
. . 3
| |
| 3 | 1, 2 | eqeqan12d 2638 |
. 2
|
| 4 | dfcleq 2616 |
. . . 4
| |
| 5 | alcom 2037 |
. . . . 5
| |
| 6 | 19.3v 1897 |
. . . . 5
| |
| 7 | ax6ev 1890 |
. . . . . . . . 9
| |
| 8 | pm5.5 351 |
. . . . . . . . 9
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . 8
|
| 10 | 19.23v 1902 |
. . . . . . . 8
| |
| 11 | 19.3v 1897 |
. . . . . . . 8
| |
| 12 | 9, 10, 11 | 3bitr4ri 293 |
. . . . . . 7
|
| 13 | pm5.32 668 |
. . . . . . . . 9
| |
| 14 | ancom 466 |
. . . . . . . . . 10
| |
| 15 | ancom 466 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | bibi12i 329 |
. . . . . . . . 9
|
| 17 | 13, 16 | bitri 264 |
. . . . . . . 8
|
| 18 | 17 | albii 1747 |
. . . . . . 7
|
| 19 | 12, 18 | bitri 264 |
. . . . . 6
|
| 20 | 19 | albii 1747 |
. . . . 5
|
| 21 | 5, 6, 20 | 3bitr3i 290 |
. . . 4
|
| 22 | 4, 21 | bitri 264 |
. . 3
|
| 23 | eqopab2b 5005 |
. . 3
| |
| 24 | opabresid 5455 |
. . . 4
| |
| 25 | opabresid 5455 |
. . . 4
| |
| 26 | 24, 25 | eqeq12i 2636 |
. . 3
|
| 27 | 22, 23, 26 | 3bitr2i 288 |
. 2
|
| 28 | 3, 27 | syl6rbbr 279 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-mulcl 9998 ax-i2m1 10004 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-n0 11293 df-relexp 13761 |
| This theorem is referenced by: iunrelexp0 37994 |
| Copyright terms: Public domain | W3C validator |