| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prel12 | Structured version Visualization version Unicode version | ||
| Description: Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| preqr1.a |
|
| preqr1.b |
|
| preq12b.c |
|
| preq12b.d |
|
| Ref | Expression |
|---|---|
| prel12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.a |
. . . . 5
| |
| 2 | 1 | prid1 4297 |
. . . 4
|
| 3 | eleq2 2690 |
. . . 4
| |
| 4 | 2, 3 | mpbii 223 |
. . 3
|
| 5 | preqr1.b |
. . . . 5
| |
| 6 | 5 | prid2 4298 |
. . . 4
|
| 7 | eleq2 2690 |
. . . 4
| |
| 8 | 6, 7 | mpbii 223 |
. . 3
|
| 9 | 4, 8 | jca 554 |
. 2
|
| 10 | 1 | elpr 4198 |
. . . 4
|
| 11 | eqeq2 2633 |
. . . . . . . . . . . 12
| |
| 12 | 11 | notbid 308 |
. . . . . . . . . . 11
|
| 13 | orel2 398 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | syl6bi 243 |
. . . . . . . . . 10
|
| 15 | 14 | impd 447 |
. . . . . . . . 9
|
| 16 | 15 | com12 32 |
. . . . . . . 8
|
| 17 | 16 | ancrd 577 |
. . . . . . 7
|
| 18 | eqeq2 2633 |
. . . . . . . . . . . 12
| |
| 19 | 18 | notbid 308 |
. . . . . . . . . . 11
|
| 20 | orel1 397 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | syl6bi 243 |
. . . . . . . . . 10
|
| 22 | 21 | impd 447 |
. . . . . . . . 9
|
| 23 | 22 | com12 32 |
. . . . . . . 8
|
| 24 | 23 | ancrd 577 |
. . . . . . 7
|
| 25 | 17, 24 | orim12d 883 |
. . . . . 6
|
| 26 | 5 | elpr 4198 |
. . . . . . 7
|
| 27 | orcom 402 |
. . . . . . 7
| |
| 28 | 26, 27 | bitri 264 |
. . . . . 6
|
| 29 | preq12b.c |
. . . . . . 7
| |
| 30 | preq12b.d |
. . . . . . 7
| |
| 31 | 1, 5, 29, 30 | preq12b 4382 |
. . . . . 6
|
| 32 | 25, 28, 31 | 3imtr4g 285 |
. . . . 5
|
| 33 | 32 | ex 450 |
. . . 4
|
| 34 | 10, 33 | syl5bi 232 |
. . 3
|
| 35 | 34 | impd 447 |
. 2
|
| 36 | 9, 35 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: prel12g 4387 dfac2 8953 |
| Copyright terms: Public domain | W3C validator |