| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq12b | Structured version Visualization version Unicode version | ||
| Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| preqr1.a |
|
| preqr1.b |
|
| preq12b.c |
|
| preq12b.d |
|
| Ref | Expression |
|---|---|
| preq12b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.a |
. . . . . 6
| |
| 2 | 1 | prid1 4297 |
. . . . 5
|
| 3 | eleq2 2690 |
. . . . 5
| |
| 4 | 2, 3 | mpbii 223 |
. . . 4
|
| 5 | 1 | elpr 4198 |
. . . 4
|
| 6 | 4, 5 | sylib 208 |
. . 3
|
| 7 | preq1 4268 |
. . . . . . . 8
| |
| 8 | 7 | eqeq1d 2624 |
. . . . . . 7
|
| 9 | preqr1.b |
. . . . . . . 8
| |
| 10 | preq12b.d |
. . . . . . . 8
| |
| 11 | 9, 10 | preqr2 4381 |
. . . . . . 7
|
| 12 | 8, 11 | syl6bi 243 |
. . . . . 6
|
| 13 | 12 | com12 32 |
. . . . 5
|
| 14 | 13 | ancld 576 |
. . . 4
|
| 15 | prcom 4267 |
. . . . . . 7
| |
| 16 | 15 | eqeq2i 2634 |
. . . . . 6
|
| 17 | preq1 4268 |
. . . . . . . . 9
| |
| 18 | 17 | eqeq1d 2624 |
. . . . . . . 8
|
| 19 | preq12b.c |
. . . . . . . . 9
| |
| 20 | 9, 19 | preqr2 4381 |
. . . . . . . 8
|
| 21 | 18, 20 | syl6bi 243 |
. . . . . . 7
|
| 22 | 21 | com12 32 |
. . . . . 6
|
| 23 | 16, 22 | sylbi 207 |
. . . . 5
|
| 24 | 23 | ancld 576 |
. . . 4
|
| 25 | 14, 24 | orim12d 883 |
. . 3
|
| 26 | 6, 25 | mpd 15 |
. 2
|
| 27 | preq12 4270 |
. . 3
| |
| 28 | preq12 4270 |
. . . 4
| |
| 29 | prcom 4267 |
. . . 4
| |
| 30 | 28, 29 | syl6eq 2672 |
. . 3
|
| 31 | 27, 30 | jaoi 394 |
. 2
|
| 32 | 26, 31 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: prel12 4383 opthpr 4384 preq12bg 4386 preqsn 4393 preqsnOLD 4394 opeqpr 4968 preleq 8514 axlowdimlem13 25834 upgrwlkdvdelem 26632 altopthsn 32068 sprsymrelfolem2 41743 |
| Copyright terms: Public domain | W3C validator |