MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq12b Structured version   Visualization version   Unicode version

Theorem preq12b 4382
Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.)
Hypotheses
Ref Expression
preqr1.a  |-  A  e. 
_V
preqr1.b  |-  B  e. 
_V
preq12b.c  |-  C  e. 
_V
preq12b.d  |-  D  e. 
_V
Assertion
Ref Expression
preq12b  |-  ( { A ,  B }  =  { C ,  D } 
<->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )

Proof of Theorem preq12b
StepHypRef Expression
1 preqr1.a . . . . . 6  |-  A  e. 
_V
21prid1 4297 . . . . 5  |-  A  e. 
{ A ,  B }
3 eleq2 2690 . . . . 5  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  e. 
{ A ,  B } 
<->  A  e.  { C ,  D } ) )
42, 3mpbii 223 . . . 4  |-  ( { A ,  B }  =  { C ,  D }  ->  A  e.  { C ,  D }
)
51elpr 4198 . . . 4  |-  ( A  e.  { C ,  D }  <->  ( A  =  C  \/  A  =  D ) )
64, 5sylib 208 . . 3  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  =  C  \/  A  =  D ) )
7 preq1 4268 . . . . . . . 8  |-  ( A  =  C  ->  { A ,  B }  =  { C ,  B }
)
87eqeq1d 2624 . . . . . . 7  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D } 
<->  { C ,  B }  =  { C ,  D } ) )
9 preqr1.b . . . . . . . 8  |-  B  e. 
_V
10 preq12b.d . . . . . . . 8  |-  D  e. 
_V
119, 10preqr2 4381 . . . . . . 7  |-  ( { C ,  B }  =  { C ,  D }  ->  B  =  D )
128, 11syl6bi 243 . . . . . 6  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D }  ->  B  =  D ) )
1312com12 32 . . . . 5  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  =  C  ->  B  =  D ) )
1413ancld 576 . . . 4  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  =  C  ->  ( A  =  C  /\  B  =  D ) ) )
15 prcom 4267 . . . . . . 7  |-  { C ,  D }  =  { D ,  C }
1615eqeq2i 2634 . . . . . 6  |-  ( { A ,  B }  =  { C ,  D } 
<->  { A ,  B }  =  { D ,  C } )
17 preq1 4268 . . . . . . . . 9  |-  ( A  =  D  ->  { A ,  B }  =  { D ,  B }
)
1817eqeq1d 2624 . . . . . . . 8  |-  ( A  =  D  ->  ( { A ,  B }  =  { D ,  C } 
<->  { D ,  B }  =  { D ,  C } ) )
19 preq12b.c . . . . . . . . 9  |-  C  e. 
_V
209, 19preqr2 4381 . . . . . . . 8  |-  ( { D ,  B }  =  { D ,  C }  ->  B  =  C )
2118, 20syl6bi 243 . . . . . . 7  |-  ( A  =  D  ->  ( { A ,  B }  =  { D ,  C }  ->  B  =  C ) )
2221com12 32 . . . . . 6  |-  ( { A ,  B }  =  { D ,  C }  ->  ( A  =  D  ->  B  =  C ) )
2316, 22sylbi 207 . . . . 5  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  =  D  ->  B  =  C ) )
2423ancld 576 . . . 4  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  =  D  ->  ( A  =  D  /\  B  =  C ) ) )
2514, 24orim12d 883 . . 3  |-  ( { A ,  B }  =  { C ,  D }  ->  ( ( A  =  C  \/  A  =  D )  ->  (
( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) ) ) )
266, 25mpd 15 . 2  |-  ( { A ,  B }  =  { C ,  D }  ->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
27 preq12 4270 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )
28 preq12 4270 . . . 4  |-  ( ( A  =  D  /\  B  =  C )  ->  { A ,  B }  =  { D ,  C } )
29 prcom 4267 . . . 4  |-  { D ,  C }  =  { C ,  D }
3028, 29syl6eq 2672 . . 3  |-  ( ( A  =  D  /\  B  =  C )  ->  { A ,  B }  =  { C ,  D } )
3127, 30jaoi 394 . 2  |-  ( ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) )  ->  { A ,  B }  =  { C ,  D } )
3226, 31impbii 199 1  |-  ( { A ,  B }  =  { C ,  D } 
<->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  prel12  4383  opthpr  4384  preq12bg  4386  preqsn  4393  preqsnOLD  4394  opeqpr  4968  preleq  8514  axlowdimlem13  25834  upgrwlkdvdelem  26632  altopthsn  32068  sprsymrelfolem2  41743
  Copyright terms: Public domain W3C validator