| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthpr | Structured version Visualization version Unicode version | ||
| Description: An unordered pair has the ordered pair property (compare opth 4945) under certain conditions. (Contributed by NM, 27-Mar-2007.) |
| Ref | Expression |
|---|---|
| preqr1.a |
|
| preqr1.b |
|
| preq12b.c |
|
| preq12b.d |
|
| Ref | Expression |
|---|---|
| opthpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.a |
. . 3
| |
| 2 | preqr1.b |
. . 3
| |
| 3 | preq12b.c |
. . 3
| |
| 4 | preq12b.d |
. . 3
| |
| 5 | 1, 2, 3, 4 | preq12b 4382 |
. 2
|
| 6 | idd 24 |
. . . 4
| |
| 7 | df-ne 2795 |
. . . . . 6
| |
| 8 | pm2.21 120 |
. . . . . 6
| |
| 9 | 7, 8 | sylbi 207 |
. . . . 5
|
| 10 | 9 | impd 447 |
. . . 4
|
| 11 | 6, 10 | jaod 395 |
. . 3
|
| 12 | orc 400 |
. . 3
| |
| 13 | 11, 12 | impbid1 215 |
. 2
|
| 14 | 5, 13 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: brdom7disj 9353 brdom6disj 9354 |
| Copyright terms: Public domain | W3C validator |