| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preqsnOLD | Structured version Visualization version Unicode version | ||
| Description: Obsolete proof of preqsn 4393 as of 23-Jul-2021. (Contributed by NM, 3-Jun-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| preqsn.1 |
|
| preqsn.2 |
|
| preqsn.3 |
|
| Ref | Expression |
|---|---|
| preqsnOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4190 |
. . 3
| |
| 2 | 1 | eqeq2i 2634 |
. 2
|
| 3 | preqsn.1 |
. . . 4
| |
| 4 | preqsn.2 |
. . . 4
| |
| 5 | preqsn.3 |
. . . 4
| |
| 6 | 3, 4, 5, 5 | preq12b 4382 |
. . 3
|
| 7 | oridm 536 |
. . . 4
| |
| 8 | eqtr3 2643 |
. . . . . 6
| |
| 9 | simpr 477 |
. . . . . 6
| |
| 10 | 8, 9 | jca 554 |
. . . . 5
|
| 11 | eqtr 2641 |
. . . . . 6
| |
| 12 | simpr 477 |
. . . . . 6
| |
| 13 | 11, 12 | jca 554 |
. . . . 5
|
| 14 | 10, 13 | impbii 199 |
. . . 4
|
| 15 | 7, 14 | bitri 264 |
. . 3
|
| 16 | 6, 15 | bitri 264 |
. 2
|
| 17 | 2, 16 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |