| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preqsn | Structured version Visualization version Unicode version | ||
| Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| preqsn.1 |
|
| preqsn.2 |
|
| preqsn.3 |
|
| Ref | Expression |
|---|---|
| preqsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4190 |
. . 3
| |
| 2 | 1 | eqeq2i 2634 |
. 2
|
| 3 | oridm 536 |
. . 3
| |
| 4 | preqsn.1 |
. . . 4
| |
| 5 | preqsn.2 |
. . . 4
| |
| 6 | preqsn.3 |
. . . 4
| |
| 7 | 4, 5, 6, 6 | preq12b 4382 |
. . 3
|
| 8 | eqeq2 2633 |
. . . 4
| |
| 9 | 8 | pm5.32ri 670 |
. . 3
|
| 10 | 3, 7, 9 | 3bitr4i 292 |
. 2
|
| 11 | 2, 10 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: opeqsn 4967 propeqop 4970 propssopi 4971 relop 5272 hash2prde 13252 symg2bas 17818 |
| Copyright terms: Public domain | W3C validator |