Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsrn Structured version   Visualization version   Unicode version

Theorem prsrn 29961
Description: Range of the relation of a preset. (Contributed by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b  |-  B  =  ( Base `  K
)
ordtNEW.l  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
Assertion
Ref Expression
prsrn  |-  ( K  e.  Preset  ->  ran  .<_  =  B )

Proof of Theorem prsrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtNEW.l . . . . 5  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
21rneqi 5352 . . . 4  |-  ran  .<_  =  ran  ( ( le
`  K )  i^i  ( B  X.  B
) )
32eleq2i 2693 . . 3  |-  ( x  e.  ran  .<_  <->  x  e.  ran  ( ( le `  K )  i^i  ( B  X.  B ) ) )
4 ordtNEW.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
5 eqid 2622 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
64, 5prsref 16932 . . . . . . . . 9  |-  ( ( K  e.  Preset  /\  x  e.  B )  ->  x
( le `  K
) x )
7 df-br 4654 . . . . . . . . 9  |-  ( x ( le `  K
) x  <->  <. x ,  x >.  e.  ( le `  K ) )
86, 7sylib 208 . . . . . . . 8  |-  ( ( K  e.  Preset  /\  x  e.  B )  ->  <. x ,  x >.  e.  ( le `  K ) )
9 simpr 477 . . . . . . . . 9  |-  ( ( K  e.  Preset  /\  x  e.  B )  ->  x  e.  B )
10 opelxpi 5148 . . . . . . . . 9  |-  ( ( x  e.  B  /\  x  e.  B )  -> 
<. x ,  x >.  e.  ( B  X.  B
) )
119, 10sylancom 701 . . . . . . . 8  |-  ( ( K  e.  Preset  /\  x  e.  B )  ->  <. x ,  x >.  e.  ( B  X.  B ) )
128, 11elind 3798 . . . . . . 7  |-  ( ( K  e.  Preset  /\  x  e.  B )  ->  <. x ,  x >.  e.  (
( le `  K
)  i^i  ( B  X.  B ) ) )
13 vex 3203 . . . . . . . 8  |-  x  e. 
_V
14 opeq1 4402 . . . . . . . . 9  |-  ( y  =  x  ->  <. y ,  x >.  =  <. x ,  x >. )
1514eleq1d 2686 . . . . . . . 8  |-  ( y  =  x  ->  ( <. y ,  x >.  e.  ( ( le `  K )  i^i  ( B  X.  B ) )  <->  <. x ,  x >.  e.  ( ( le `  K )  i^i  ( B  X.  B ) ) ) )
1613, 15spcev 3300 . . . . . . 7  |-  ( <.
x ,  x >.  e.  ( ( le `  K )  i^i  ( B  X.  B ) )  ->  E. y <. y ,  x >.  e.  (
( le `  K
)  i^i  ( B  X.  B ) ) )
1712, 16syl 17 . . . . . 6  |-  ( ( K  e.  Preset  /\  x  e.  B )  ->  E. y <. y ,  x >.  e.  ( ( le `  K )  i^i  ( B  X.  B ) ) )
1817ex 450 . . . . 5  |-  ( K  e.  Preset  ->  ( x  e.  B  ->  E. y <. y ,  x >.  e.  ( ( le `  K )  i^i  ( B  X.  B ) ) ) )
19 inss2 3834 . . . . . . . 8  |-  ( ( le `  K )  i^i  ( B  X.  B ) )  C_  ( B  X.  B
)
2019sseli 3599 . . . . . . 7  |-  ( <.
y ,  x >.  e.  ( ( le `  K )  i^i  ( B  X.  B ) )  ->  <. y ,  x >.  e.  ( B  X.  B ) )
21 opelxp2 5151 . . . . . . 7  |-  ( <.
y ,  x >.  e.  ( B  X.  B
)  ->  x  e.  B )
2220, 21syl 17 . . . . . 6  |-  ( <.
y ,  x >.  e.  ( ( le `  K )  i^i  ( B  X.  B ) )  ->  x  e.  B
)
2322exlimiv 1858 . . . . 5  |-  ( E. y <. y ,  x >.  e.  ( ( le
`  K )  i^i  ( B  X.  B
) )  ->  x  e.  B )
2418, 23impbid1 215 . . . 4  |-  ( K  e.  Preset  ->  ( x  e.  B  <->  E. y <. y ,  x >.  e.  (
( le `  K
)  i^i  ( B  X.  B ) ) ) )
2513elrn2 5365 . . . 4  |-  ( x  e.  ran  ( ( le `  K )  i^i  ( B  X.  B ) )  <->  E. y <. y ,  x >.  e.  ( ( le `  K )  i^i  ( B  X.  B ) ) )
2624, 25syl6rbbr 279 . . 3  |-  ( K  e.  Preset  ->  ( x  e. 
ran  ( ( le
`  K )  i^i  ( B  X.  B
) )  <->  x  e.  B ) )
273, 26syl5bb 272 . 2  |-  ( K  e.  Preset  ->  ( x  e. 
ran  .<_ 
<->  x  e.  B ) )
2827eqrdv 2620 1  |-  ( K  e.  Preset  ->  ran  .<_  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    i^i cin 3573   <.cop 4183   class class class wbr 4653    X. cxp 5112   ran crn 5115   ` cfv 5888   Basecbs 15857   lecple 15948    Preset cpreset 16926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-iota 5851  df-fv 5896  df-preset 16928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator