MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwel Structured version   Visualization version   Unicode version

Theorem pwel 4920
Description: Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
pwel  |-  ( A  e.  B  ->  ~P A  e.  ~P ~P U. B )

Proof of Theorem pwel
StepHypRef Expression
1 elssuni 4467 . . 3  |-  ( A  e.  B  ->  A  C_ 
U. B )
2 sspwb 4917 . . 3  |-  ( A 
C_  U. B  <->  ~P A  C_ 
~P U. B )
31, 2sylib 208 . 2  |-  ( A  e.  B  ->  ~P A  C_  ~P U. B
)
4 pwexg 4850 . . 3  |-  ( A  e.  B  ->  ~P A  e.  _V )
5 elpwg 4166 . . 3  |-  ( ~P A  e.  _V  ->  ( ~P A  e.  ~P ~P U. B  <->  ~P A  C_ 
~P U. B ) )
64, 5syl 17 . 2  |-  ( A  e.  B  ->  ( ~P A  e.  ~P ~P U. B  <->  ~P A  C_ 
~P U. B ) )
73, 6mpbird 247 1  |-  ( A  e.  B  ->  ~P A  e.  ~P ~P U. B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator