Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwelg Structured version   Visualization version   Unicode version

Theorem pwelg 37865
Description: The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020.)
Assertion
Ref Expression
pwelg  |-  ( A. x  e.  B  ( U. x  e.  B  /\  ~P x  e.  B
)  ->  ( A  e.  B  <->  ~P A  e.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem pwelg
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( ( U. x  e.  B  /\  ~P x  e.  B
)  ->  ~P x  e.  B )
21ralimi 2952 . . 3  |-  ( A. x  e.  B  ( U. x  e.  B  /\  ~P x  e.  B
)  ->  A. x  e.  B  ~P x  e.  B )
3 pweq 4161 . . . . 5  |-  ( x  =  A  ->  ~P x  =  ~P A
)
43eleq1d 2686 . . . 4  |-  ( x  =  A  ->  ( ~P x  e.  B  <->  ~P A  e.  B ) )
54rspccv 3306 . . 3  |-  ( A. x  e.  B  ~P x  e.  B  ->  ( A  e.  B  ->  ~P A  e.  B
) )
62, 5syl 17 . 2  |-  ( A. x  e.  B  ( U. x  e.  B  /\  ~P x  e.  B
)  ->  ( A  e.  B  ->  ~P A  e.  B ) )
7 simpl 473 . . . 4  |-  ( ( U. x  e.  B  /\  ~P x  e.  B
)  ->  U. x  e.  B )
87ralimi 2952 . . 3  |-  ( A. x  e.  B  ( U. x  e.  B  /\  ~P x  e.  B
)  ->  A. x  e.  B  U. x  e.  B )
9 unieq 4444 . . . . . 6  |-  ( x  =  ~P A  ->  U. x  =  U. ~P A )
10 unipw 4918 . . . . . 6  |-  U. ~P A  =  A
119, 10syl6eq 2672 . . . . 5  |-  ( x  =  ~P A  ->  U. x  =  A
)
1211eleq1d 2686 . . . 4  |-  ( x  =  ~P A  -> 
( U. x  e.  B  <->  A  e.  B
) )
1312rspccv 3306 . . 3  |-  ( A. x  e.  B  U. x  e.  B  ->  ( ~P A  e.  B  ->  A  e.  B ) )
148, 13syl 17 . 2  |-  ( A. x  e.  B  ( U. x  e.  B  /\  ~P x  e.  B
)  ->  ( ~P A  e.  B  ->  A  e.  B ) )
156, 14impbid 202 1  |-  ( A. x  e.  B  ( U. x  e.  B  /\  ~P x  e.  B
)  ->  ( A  e.  B  <->  ~P A  e.  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ~Pcpw 4158   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by:  pwinfig  37866
  Copyright terms: Public domain W3C validator