Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-isfinite6 Structured version   Visualization version   Unicode version

Theorem rp-isfinite6 37864
Description: A set is said to be finite if it is either empty or it can be put in one-to-one correspondence with all the natural numbers between 1 and some  n  e.  NN. (Contributed by Richard Penner, 10-Mar-2020.)
Assertion
Ref Expression
rp-isfinite6  |-  ( A  e.  Fin  <->  ( A  =  (/)  \/  E. n  e.  NN  ( 1 ... n )  ~~  A
) )
Distinct variable group:    A, n

Proof of Theorem rp-isfinite6
StepHypRef Expression
1 exmid 431 . . . 4  |-  ( A  =  (/)  \/  -.  A  =  (/) )
21biantrur 527 . . 3  |-  ( A  e.  Fin  <->  ( ( A  =  (/)  \/  -.  A  =  (/) )  /\  A  e.  Fin )
)
3 andir 912 . . 3  |-  ( ( ( A  =  (/)  \/ 
-.  A  =  (/) )  /\  A  e.  Fin ) 
<->  ( ( A  =  (/)  /\  A  e.  Fin )  \/  ( -.  A  =  (/)  /\  A  e.  Fin ) ) )
42, 3bitri 264 . 2  |-  ( A  e.  Fin  <->  ( ( A  =  (/)  /\  A  e.  Fin )  \/  ( -.  A  =  (/)  /\  A  e.  Fin ) ) )
5 simpl 473 . . . 4  |-  ( ( A  =  (/)  /\  A  e.  Fin )  ->  A  =  (/) )
6 0fin 8188 . . . . . 6  |-  (/)  e.  Fin
7 eleq1a 2696 . . . . . 6  |-  ( (/)  e.  Fin  ->  ( A  =  (/)  ->  A  e.  Fin ) )
86, 7ax-mp 5 . . . . 5  |-  ( A  =  (/)  ->  A  e. 
Fin )
98ancli 574 . . . 4  |-  ( A  =  (/)  ->  ( A  =  (/)  /\  A  e. 
Fin ) )
105, 9impbii 199 . . 3  |-  ( ( A  =  (/)  /\  A  e.  Fin )  <->  A  =  (/) )
11 rp-isfinite5 37863 . . . . . 6  |-  ( A  e.  Fin  <->  E. n  e.  NN0  ( 1 ... n )  ~~  A
)
12 df-rex 2918 . . . . . 6  |-  ( E. n  e.  NN0  (
1 ... n )  ~~  A 
<->  E. n ( n  e.  NN0  /\  (
1 ... n )  ~~  A ) )
1311, 12bitri 264 . . . . 5  |-  ( A  e.  Fin  <->  E. n
( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )
)
1413anbi2i 730 . . . 4  |-  ( ( -.  A  =  (/)  /\  A  e.  Fin )  <->  ( -.  A  =  (/)  /\ 
E. n ( n  e.  NN0  /\  (
1 ... n )  ~~  A ) ) )
15 df-rex 2918 . . . . 5  |-  ( E. n  e.  NN  (
1 ... n )  ~~  A 
<->  E. n ( n  e.  NN  /\  (
1 ... n )  ~~  A ) )
16 en0 8019 . . . . . . . . . . . . . . 15  |-  ( A 
~~  (/)  <->  A  =  (/) )
1716bicomi 214 . . . . . . . . . . . . . 14  |-  ( A  =  (/)  <->  A  ~~  (/) )
18 ensymb 8004 . . . . . . . . . . . . . 14  |-  ( A 
~~  (/)  <->  (/)  ~~  A )
1917, 18bitri 264 . . . . . . . . . . . . 13  |-  ( A  =  (/)  <->  (/)  ~~  A )
2019notbii 310 . . . . . . . . . . . 12  |-  ( -.  A  =  (/)  <->  -.  (/)  ~~  A
)
21 elnn0 11294 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  <->  ( n  e.  NN  \/  n  =  0 ) )
2221anbi1i 731 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )  <->  ( ( n  e.  NN  \/  n  =  0
)  /\  ( 1 ... n )  ~~  A ) )
23 andir 912 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  \/  n  =  0
)  /\  ( 1 ... n )  ~~  A )  <->  ( (
n  e.  NN  /\  ( 1 ... n
)  ~~  A )  \/  ( n  =  0  /\  ( 1 ... n )  ~~  A
) ) )
2422, 23bitri 264 . . . . . . . . . . . 12  |-  ( ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )  <->  ( ( n  e.  NN  /\  ( 1 ... n
)  ~~  A )  \/  ( n  =  0  /\  ( 1 ... n )  ~~  A
) ) )
2520, 24anbi12i 733 . . . . . . . . . . 11  |-  ( ( -.  A  =  (/)  /\  ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )
)  <->  ( -.  (/)  ~~  A  /\  ( ( n  e.  NN  /\  ( 1 ... n )  ~~  A )  \/  (
n  =  0  /\  ( 1 ... n
)  ~~  A )
) ) )
26 andi 911 . . . . . . . . . . 11  |-  ( ( -.  (/)  ~~  A  /\  ( ( n  e.  NN  /\  ( 1 ... n )  ~~  A )  \/  (
n  =  0  /\  ( 1 ... n
)  ~~  A )
) )  <->  ( ( -.  (/)  ~~  A  /\  ( n  e.  NN  /\  ( 1 ... n
)  ~~  A )
)  \/  ( -.  (/)  ~~  A  /\  (
n  =  0  /\  ( 1 ... n
)  ~~  A )
) ) )
2725, 26bitri 264 . . . . . . . . . 10  |-  ( ( -.  A  =  (/)  /\  ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )
)  <->  ( ( -.  (/)  ~~  A  /\  (
n  e.  NN  /\  ( 1 ... n
)  ~~  A )
)  \/  ( -.  (/)  ~~  A  /\  (
n  =  0  /\  ( 1 ... n
)  ~~  A )
) ) )
28 3anass 1042 . . . . . . . . . . 11  |-  ( ( -.  (/)  ~~  A  /\  n  e.  NN  /\  (
1 ... n )  ~~  A )  <->  ( -.  (/)  ~~  A  /\  (
n  e.  NN  /\  ( 1 ... n
)  ~~  A )
) )
29 3anass 1042 . . . . . . . . . . 11  |-  ( ( -.  (/)  ~~  A  /\  n  =  0  /\  ( 1 ... n
)  ~~  A )  <->  ( -.  (/)  ~~  A  /\  ( n  =  0  /\  ( 1 ... n
)  ~~  A )
) )
3028, 29orbi12i 543 . . . . . . . . . 10  |-  ( ( ( -.  (/)  ~~  A  /\  n  e.  NN  /\  ( 1 ... n
)  ~~  A )  \/  ( -.  (/)  ~~  A  /\  n  =  0  /\  ( 1 ... n
)  ~~  A )
)  <->  ( ( -.  (/)  ~~  A  /\  (
n  e.  NN  /\  ( 1 ... n
)  ~~  A )
)  \/  ( -.  (/)  ~~  A  /\  (
n  =  0  /\  ( 1 ... n
)  ~~  A )
) ) )
3127, 30sylbb2 228 . . . . . . . . 9  |-  ( ( -.  A  =  (/)  /\  ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )
)  ->  ( ( -.  (/)  ~~  A  /\  n  e.  NN  /\  (
1 ... n )  ~~  A )  \/  ( -.  (/)  ~~  A  /\  n  =  0  /\  ( 1 ... n
)  ~~  A )
) )
32 simp2 1062 . . . . . . . . . 10  |-  ( ( -.  (/)  ~~  A  /\  n  e.  NN  /\  (
1 ... n )  ~~  A )  ->  n  e.  NN )
33 oveq2 6658 . . . . . . . . . . . 12  |-  ( n  =  0  ->  (
1 ... n )  =  ( 1 ... 0
) )
34 fz10 12362 . . . . . . . . . . . 12  |-  ( 1 ... 0 )  =  (/)
3533, 34syl6eq 2672 . . . . . . . . . . 11  |-  ( n  =  0  ->  (
1 ... n )  =  (/) )
36 simp2 1062 . . . . . . . . . . . . 13  |-  ( ( -.  (/)  ~~  A  /\  ( 1 ... n
)  =  (/)  /\  (
1 ... n )  ~~  A )  ->  (
1 ... n )  =  (/) )
37 simp3 1063 . . . . . . . . . . . . 13  |-  ( ( -.  (/)  ~~  A  /\  ( 1 ... n
)  =  (/)  /\  (
1 ... n )  ~~  A )  ->  (
1 ... n )  ~~  A )
3836, 37eqbrtrrd 4677 . . . . . . . . . . . 12  |-  ( ( -.  (/)  ~~  A  /\  ( 1 ... n
)  =  (/)  /\  (
1 ... n )  ~~  A )  ->  (/)  ~~  A
)
39 simp1 1061 . . . . . . . . . . . 12  |-  ( ( -.  (/)  ~~  A  /\  ( 1 ... n
)  =  (/)  /\  (
1 ... n )  ~~  A )  ->  -.  (/)  ~~  A )
4038, 39pm2.21dd 186 . . . . . . . . . . 11  |-  ( ( -.  (/)  ~~  A  /\  ( 1 ... n
)  =  (/)  /\  (
1 ... n )  ~~  A )  ->  n  e.  NN )
4135, 40syl3an2 1360 . . . . . . . . . 10  |-  ( ( -.  (/)  ~~  A  /\  n  =  0  /\  ( 1 ... n
)  ~~  A )  ->  n  e.  NN )
4232, 41jaoi 394 . . . . . . . . 9  |-  ( ( ( -.  (/)  ~~  A  /\  n  e.  NN  /\  ( 1 ... n
)  ~~  A )  \/  ( -.  (/)  ~~  A  /\  n  =  0  /\  ( 1 ... n
)  ~~  A )
)  ->  n  e.  NN )
4331, 42syl 17 . . . . . . . 8  |-  ( ( -.  A  =  (/)  /\  ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )
)  ->  n  e.  NN )
44 simprr 796 . . . . . . . 8  |-  ( ( -.  A  =  (/)  /\  ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )
)  ->  ( 1 ... n )  ~~  A )
4543, 44jca 554 . . . . . . 7  |-  ( ( -.  A  =  (/)  /\  ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )
)  ->  ( n  e.  NN  /\  ( 1 ... n )  ~~  A ) )
46 nngt0 11049 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <  n )
47 hash0 13158 . . . . . . . . . . . . 13  |-  ( # `  (/) )  =  0
4847a1i 11 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  ( # `
 (/) )  =  0 )
49 nnnn0 11299 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  NN0 )
50 hashfz1 13134 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( # `  ( 1 ... n
) )  =  n )
5149, 50syl 17 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  ( # `
 ( 1 ... n ) )  =  n )
5246, 48, 513brtr4d 4685 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  ( # `
 (/) )  <  ( # `
 ( 1 ... n ) ) )
53 fzfi 12771 . . . . . . . . . . . 12  |-  ( 1 ... n )  e. 
Fin
54 hashsdom 13170 . . . . . . . . . . . 12  |-  ( (
(/)  e.  Fin  /\  (
1 ... n )  e. 
Fin )  ->  (
( # `  (/) )  < 
( # `  ( 1 ... n ) )  <->  (/) 
~<  ( 1 ... n
) ) )
556, 53, 54mp2an 708 . . . . . . . . . . 11  |-  ( (
# `  (/) )  < 
( # `  ( 1 ... n ) )  <->  (/) 
~<  ( 1 ... n
) )
5652, 55sylib 208 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (/)  ~<  (
1 ... n ) )
5756anim1i 592 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  ( 1 ... n
)  ~~  A )  ->  ( (/)  ~<  ( 1 ... n )  /\  ( 1 ... n
)  ~~  A )
)
58 sdomentr 8094 . . . . . . . . . . 11  |-  ( (
(/)  ~<  ( 1 ... n )  /\  (
1 ... n )  ~~  A )  ->  (/)  ~<  A )
59 sdomnen 7984 . . . . . . . . . . 11  |-  ( (/)  ~<  A  ->  -.  (/)  ~~  A
)
6058, 59syl 17 . . . . . . . . . 10  |-  ( (
(/)  ~<  ( 1 ... n )  /\  (
1 ... n )  ~~  A )  ->  -.  (/)  ~~  A )
61 ensymb 8004 . . . . . . . . . . . 12  |-  ( (/)  ~~  A  <->  A  ~~  (/) )
6261, 16bitri 264 . . . . . . . . . . 11  |-  ( (/)  ~~  A  <->  A  =  (/) )
6362notbii 310 . . . . . . . . . 10  |-  ( -.  (/)  ~~  A  <->  -.  A  =  (/) )
6460, 63sylib 208 . . . . . . . . 9  |-  ( (
(/)  ~<  ( 1 ... n )  /\  (
1 ... n )  ~~  A )  ->  -.  A  =  (/) )
6557, 64syl 17 . . . . . . . 8  |-  ( ( n  e.  NN  /\  ( 1 ... n
)  ~~  A )  ->  -.  A  =  (/) )
6649anim1i 592 . . . . . . . 8  |-  ( ( n  e.  NN  /\  ( 1 ... n
)  ~~  A )  ->  ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )
)
6765, 66jca 554 . . . . . . 7  |-  ( ( n  e.  NN  /\  ( 1 ... n
)  ~~  A )  ->  ( -.  A  =  (/)  /\  ( n  e. 
NN0  /\  ( 1 ... n )  ~~  A ) ) )
6845, 67impbii 199 . . . . . 6  |-  ( ( -.  A  =  (/)  /\  ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )
)  <->  ( n  e.  NN  /\  ( 1 ... n )  ~~  A ) )
6968exbii 1774 . . . . 5  |-  ( E. n ( -.  A  =  (/)  /\  ( n  e.  NN0  /\  (
1 ... n )  ~~  A ) )  <->  E. n
( n  e.  NN  /\  ( 1 ... n
)  ~~  A )
)
70 19.42v 1918 . . . . 5  |-  ( E. n ( -.  A  =  (/)  /\  ( n  e.  NN0  /\  (
1 ... n )  ~~  A ) )  <->  ( -.  A  =  (/)  /\  E. n ( n  e. 
NN0  /\  ( 1 ... n )  ~~  A ) ) )
7115, 69, 703bitr2ri 289 . . . 4  |-  ( ( -.  A  =  (/)  /\ 
E. n ( n  e.  NN0  /\  (
1 ... n )  ~~  A ) )  <->  E. n  e.  NN  ( 1 ... n )  ~~  A
)
7214, 71bitri 264 . . 3  |-  ( ( -.  A  =  (/)  /\  A  e.  Fin )  <->  E. n  e.  NN  (
1 ... n )  ~~  A )
7310, 72orbi12i 543 . 2  |-  ( ( ( A  =  (/)  /\  A  e.  Fin )  \/  ( -.  A  =  (/)  /\  A  e.  Fin ) )  <->  ( A  =  (/)  \/  E. n  e.  NN  ( 1 ... n )  ~~  A
) )
744, 73bitri 264 1  |-  ( A  e.  Fin  <->  ( A  =  (/)  \/  E. n  e.  NN  ( 1 ... n )  ~~  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ~~ cen 7952    ~< csdm 7954   Fincfn 7955   0cc0 9936   1c1 9937    < clt 10074   NNcn 11020   NN0cn0 11292   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator