| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsnALT | Structured version Visualization version Unicode version | ||
| Description: Alternate proof of pwsn 4428, more direct. (Contributed by NM, 5-Jun-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pwsnALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3591 |
. . . . . . . . 9
| |
| 2 | velsn 4193 |
. . . . . . . . . . 11
| |
| 3 | 2 | imbi2i 326 |
. . . . . . . . . 10
|
| 4 | 3 | albii 1747 |
. . . . . . . . 9
|
| 5 | 1, 4 | bitri 264 |
. . . . . . . 8
|
| 6 | neq0 3930 |
. . . . . . . . . 10
| |
| 7 | exintr 1819 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | syl5bi 232 |
. . . . . . . . 9
|
| 9 | df-clel 2618 |
. . . . . . . . . . 11
| |
| 10 | exancom 1787 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | bitr2i 265 |
. . . . . . . . . 10
|
| 12 | snssi 4339 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | sylbi 207 |
. . . . . . . . 9
|
| 14 | 8, 13 | syl6 35 |
. . . . . . . 8
|
| 15 | 5, 14 | sylbi 207 |
. . . . . . 7
|
| 16 | 15 | anc2li 580 |
. . . . . 6
|
| 17 | eqss 3618 |
. . . . . 6
| |
| 18 | 16, 17 | syl6ibr 242 |
. . . . 5
|
| 19 | 18 | orrd 393 |
. . . 4
|
| 20 | 0ss 3972 |
. . . . . 6
| |
| 21 | sseq1 3626 |
. . . . . 6
| |
| 22 | 20, 21 | mpbiri 248 |
. . . . 5
|
| 23 | eqimss 3657 |
. . . . 5
| |
| 24 | 22, 23 | jaoi 394 |
. . . 4
|
| 25 | 19, 24 | impbii 199 |
. . 3
|
| 26 | 25 | abbii 2739 |
. 2
|
| 27 | df-pw 4160 |
. 2
| |
| 28 | dfpr2 4195 |
. 2
| |
| 29 | 26, 27, 28 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |