MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpr Structured version   Visualization version   Unicode version

Theorem pwpr 4430
Description: The power set of an unordered pair. (Contributed by NM, 1-May-2009.)
Assertion
Ref Expression
pwpr  |-  ~P { A ,  B }  =  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )

Proof of Theorem pwpr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sspr 4366 . . . 4  |-  ( x 
C_  { A ,  B }  <->  ( ( x  =  (/)  \/  x  =  { A } )  \/  ( x  =  { B }  \/  x  =  { A ,  B } ) ) )
2 vex 3203 . . . . . 6  |-  x  e. 
_V
32elpr 4198 . . . . 5  |-  ( x  e.  { (/) ,  { A } }  <->  ( x  =  (/)  \/  x  =  { A } ) )
42elpr 4198 . . . . 5  |-  ( x  e.  { { B } ,  { A ,  B } }  <->  ( x  =  { B }  \/  x  =  { A ,  B } ) )
53, 4orbi12i 543 . . . 4  |-  ( ( x  e.  { (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } )  <-> 
( ( x  =  (/)  \/  x  =  { A } )  \/  (
x  =  { B }  \/  x  =  { A ,  B }
) ) )
61, 5bitr4i 267 . . 3  |-  ( x 
C_  { A ,  B }  <->  ( x  e. 
{ (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } ) )
7 selpw 4165 . . 3  |-  ( x  e.  ~P { A ,  B }  <->  x  C_  { A ,  B } )
8 elun 3753 . . 3  |-  ( x  e.  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )  <->  ( x  e.  { (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } ) )
96, 7, 83bitr4i 292 . 2  |-  ( x  e.  ~P { A ,  B }  <->  x  e.  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } ) )
109eqriv 2619 1  |-  ~P { A ,  B }  =  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 383    = wceq 1483    e. wcel 1990    u. cun 3572    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180
This theorem is referenced by:  pwpwpw0  4432  ord3ex  4856  hash2pwpr  13258  pr2pwpr  13261  prsiga  30194  prsal  40538
  Copyright terms: Public domain W3C validator