| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.2zb | Structured version Visualization version Unicode version | ||
| Description: A response to the notion
that the condition |
| Ref | Expression |
|---|---|
| r19.2zb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2z 4060 |
. . 3
| |
| 2 | 1 | ex 450 |
. 2
|
| 3 | noel 3919 |
. . . . . . 7
| |
| 4 | 3 | pm2.21i 116 |
. . . . . 6
|
| 5 | 4 | rgen 2922 |
. . . . 5
|
| 6 | raleq 3138 |
. . . . 5
| |
| 7 | 5, 6 | mpbiri 248 |
. . . 4
|
| 8 | 7 | necon3bi 2820 |
. . 3
|
| 9 | exsimpl 1795 |
. . . 4
| |
| 10 | df-rex 2918 |
. . . 4
| |
| 11 | n0 3931 |
. . . 4
| |
| 12 | 9, 10, 11 | 3imtr4i 281 |
. . 3
|
| 13 | 8, 12 | ja 173 |
. 2
|
| 14 | 2, 13 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: iinpreima 6345 utopbas 22039 clsk3nimkb 38338 radcnvrat 38513 |
| Copyright terms: Public domain | W3C validator |