MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopbas Structured version   Visualization version   Unicode version

Theorem utopbas 22039
Description: The base of the topology induced by a uniform structure  U. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
utopbas  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  U. (unifTop `  U )
)

Proof of Theorem utopbas
Dummy variables  a 
v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utopval 22036 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  (unifTop `  U
)  =  { a  e.  ~P X  |  A. x  e.  a  E. v  e.  U  ( v " {
x } )  C_  a } )
2 ssrab2 3687 . . . 4  |-  { a  e.  ~P X  |  A. x  e.  a  E. v  e.  U  ( v " {
x } )  C_  a }  C_  ~P X
31, 2syl6eqss 3655 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  (unifTop `  U
)  C_  ~P X
)
4 ssid 3624 . . . . . 6  |-  X  C_  X
54a1i 11 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  X  C_  X
)
6 ustssxp 22008 . . . . . . . . 9  |-  ( ( U  e.  (UnifOn `  X )  /\  v  e.  U )  ->  v  C_  ( X  X.  X
) )
7 imassrn 5477 . . . . . . . . . 10  |-  ( v
" { x }
)  C_  ran  v
8 rnss 5354 . . . . . . . . . . 11  |-  ( v 
C_  ( X  X.  X )  ->  ran  v  C_  ran  ( X  X.  X ) )
9 rnxpid 5567 . . . . . . . . . . 11  |-  ran  ( X  X.  X )  =  X
108, 9syl6sseq 3651 . . . . . . . . . 10  |-  ( v 
C_  ( X  X.  X )  ->  ran  v  C_  X )
117, 10syl5ss 3614 . . . . . . . . 9  |-  ( v 
C_  ( X  X.  X )  ->  (
v " { x } )  C_  X
)
126, 11syl 17 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  v  e.  U )  ->  (
v " { x } )  C_  X
)
1312ralrimiva 2966 . . . . . . 7  |-  ( U  e.  (UnifOn `  X
)  ->  A. v  e.  U  ( v " { x } ) 
C_  X )
14 ustne0 22017 . . . . . . . 8  |-  ( U  e.  (UnifOn `  X
)  ->  U  =/=  (/) )
15 r19.2zb 4061 . . . . . . . 8  |-  ( U  =/=  (/)  <->  ( A. v  e.  U  ( v " { x } ) 
C_  X  ->  E. v  e.  U  ( v " { x } ) 
C_  X ) )
1614, 15sylib 208 . . . . . . 7  |-  ( U  e.  (UnifOn `  X
)  ->  ( A. v  e.  U  (
v " { x } )  C_  X  ->  E. v  e.  U  ( v " {
x } )  C_  X ) )
1713, 16mpd 15 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  E. v  e.  U  ( v " { x } ) 
C_  X )
1817ralrimivw 2967 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  A. x  e.  X  E. v  e.  U  ( v " { x } ) 
C_  X )
19 elutop 22037 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  ( X  e.  (unifTop `  U )  <->  ( X  C_  X  /\  A. x  e.  X  E. v  e.  U  (
v " { x } )  C_  X
) ) )
205, 18, 19mpbir2and 957 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  X  e.  (unifTop `  U ) )
21 elpwuni 4616 . . . 4  |-  ( X  e.  (unifTop `  U
)  ->  ( (unifTop `  U )  C_  ~P X 
<-> 
U. (unifTop `  U )  =  X ) )
2220, 21syl 17 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( (unifTop `  U )  C_  ~P X 
<-> 
U. (unifTop `  U )  =  X ) )
233, 22mpbid 222 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  U. (unifTop `  U )  =  X )
2423eqcomd 2628 1  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  U. (unifTop `  U )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436    X. cxp 5112   ran crn 5115   "cima 5117   ` cfv 5888  UnifOncust 22003  unifTopcutop 22034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ust 22004  df-utop 22035
This theorem is referenced by:  utoptopon  22040  utop2nei  22054  utopreg  22056  tuslem  22071
  Copyright terms: Public domain W3C validator