| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iinpreima | Structured version Visualization version Unicode version | ||
| Description: Preimage of an intersection. (Contributed by FL, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| iinpreima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 790 |
. . . . 5
| |
| 2 | cnvimass 5485 |
. . . . . . 7
| |
| 3 | 2 | sseli 3599 |
. . . . . 6
|
| 4 | 3 | adantl 482 |
. . . . 5
|
| 5 | fvex 6201 |
. . . . . 6
| |
| 6 | fvimacnvi 6331 |
. . . . . . 7
| |
| 7 | 6 | adantlr 751 |
. . . . . 6
|
| 8 | eliin 4525 |
. . . . . . 7
| |
| 9 | 8 | biimpa 501 |
. . . . . 6
|
| 10 | 5, 7, 9 | sylancr 695 |
. . . . 5
|
| 11 | fvimacnv 6332 |
. . . . . . 7
| |
| 12 | 11 | ralbidv 2986 |
. . . . . 6
|
| 13 | 12 | biimpa 501 |
. . . . 5
|
| 14 | 1, 4, 10, 13 | syl21anc 1325 |
. . . 4
|
| 15 | vex 3203 |
. . . . 5
| |
| 16 | eliin 4525 |
. . . . 5
| |
| 17 | 15, 16 | ax-mp 5 |
. . . 4
|
| 18 | 14, 17 | sylibr 224 |
. . 3
|
| 19 | simpll 790 |
. . . . . 6
| |
| 20 | 16 | biimpd 219 |
. . . . . . . 8
|
| 21 | 15, 20 | ax-mp 5 |
. . . . . . 7
|
| 22 | 21 | adantl 482 |
. . . . . 6
|
| 23 | fvimacnvi 6331 |
. . . . . . . 8
| |
| 24 | 23 | ex 450 |
. . . . . . 7
|
| 25 | 24 | ralimdv 2963 |
. . . . . 6
|
| 26 | 19, 22, 25 | sylc 65 |
. . . . 5
|
| 27 | 5, 8 | ax-mp 5 |
. . . . 5
|
| 28 | 26, 27 | sylibr 224 |
. . . 4
|
| 29 | r19.2zb 4061 |
. . . . . . . . . 10
| |
| 30 | 29 | biimpi 206 |
. . . . . . . . 9
|
| 31 | cnvimass 5485 |
. . . . . . . . . . 11
| |
| 32 | 31 | sseli 3599 |
. . . . . . . . . 10
|
| 33 | 32 | rexlimivw 3029 |
. . . . . . . . 9
|
| 34 | 30, 33 | syl6 35 |
. . . . . . . 8
|
| 35 | 17, 34 | syl5bi 232 |
. . . . . . 7
|
| 36 | 35 | adantl 482 |
. . . . . 6
|
| 37 | 36 | imp 445 |
. . . . 5
|
| 38 | fvimacnv 6332 |
. . . . 5
| |
| 39 | 19, 37, 38 | syl2anc 693 |
. . . 4
|
| 40 | 28, 39 | mpbid 222 |
. . 3
|
| 41 | 18, 40 | impbida 877 |
. 2
|
| 42 | 41 | eqrdv 2620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iin 4523 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
| This theorem is referenced by: intpreima 6346 |
| Copyright terms: Public domain | W3C validator |