| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsk3nimkb | Structured version Visualization version Unicode version | ||
| Description: If the base set is not
empty, axiom K3 does not imply KB. An concrete
example with a pseudo-closure function of
|
| Ref | Expression |
|---|---|
| clsk3nimkb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 7567 |
. . . . . 6
| |
| 2 | 1 | elexi 3213 |
. . . . 5
|
| 3 | 1n0 7575 |
. . . . . 6
| |
| 4 | nelsn 4212 |
. . . . . 6
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . 5
|
| 6 | eldif 3584 |
. . . . . 6
| |
| 7 | ne0i 3921 |
. . . . . 6
| |
| 8 | 6, 7 | sylbir 225 |
. . . . 5
|
| 9 | 2, 5, 8 | mp2an 708 |
. . . 4
|
| 10 | r19.2zb 4061 |
. . . 4
| |
| 11 | 9, 10 | mpbi 220 |
. . 3
|
| 12 | rexex 3002 |
. . 3
| |
| 13 | rexanali 2998 |
. . . . 5
| |
| 14 | 13 | exbii 1774 |
. . . 4
|
| 15 | exnal 1754 |
. . . 4
| |
| 16 | 14, 15 | sylbb 209 |
. . 3
|
| 17 | 11, 12, 16 | 3syl 18 |
. 2
|
| 18 | id 22 |
. . . . . . 7
| |
| 19 | difssd 3738 |
. . . . . . 7
| |
| 20 | 18, 19 | sselpwd 4807 |
. . . . . 6
|
| 21 | 20 | adantr 481 |
. . . . 5
|
| 22 | eqid 2622 |
. . . . 5
| |
| 23 | 21, 22 | fmptd 6385 |
. . . 4
|
| 24 | pwexg 4850 |
. . . . 5
| |
| 25 | 24, 24 | elmapd 7871 |
. . . 4
|
| 26 | 23, 25 | mpbird 247 |
. . 3
|
| 27 | simpllr 799 |
. . . . . . . . 9
| |
| 28 | difeq2 3722 |
. . . . . . . . . 10
| |
| 29 | 28 | cbvmptv 4750 |
. . . . . . . . 9
|
| 30 | 27, 29 | syl6eq 2672 |
. . . . . . . 8
|
| 31 | difeq2 3722 |
. . . . . . . . 9
| |
| 32 | 31 | adantl 482 |
. . . . . . . 8
|
| 33 | simplll 798 |
. . . . . . . . 9
| |
| 34 | simplr 792 |
. . . . . . . . . . 11
| |
| 35 | 34 | elpwid 4170 |
. . . . . . . . . 10
|
| 36 | simpr 477 |
. . . . . . . . . . 11
| |
| 37 | 36 | elpwid 4170 |
. . . . . . . . . 10
|
| 38 | 35, 37 | unssd 3789 |
. . . . . . . . 9
|
| 39 | 33, 38 | sselpwd 4807 |
. . . . . . . 8
|
| 40 | vex 3203 |
. . . . . . . . . 10
| |
| 41 | 40 | difexi 4809 |
. . . . . . . . 9
|
| 42 | 41 | a1i 11 |
. . . . . . . 8
|
| 43 | 30, 32, 39, 42 | fvmptd 6288 |
. . . . . . 7
|
| 44 | difeq2 3722 |
. . . . . . . . . . 11
| |
| 45 | 44 | adantl 482 |
. . . . . . . . . 10
|
| 46 | 40 | difexi 4809 |
. . . . . . . . . . 11
|
| 47 | 46 | a1i 11 |
. . . . . . . . . 10
|
| 48 | 30, 45, 34, 47 | fvmptd 6288 |
. . . . . . . . 9
|
| 49 | difeq2 3722 |
. . . . . . . . . . 11
| |
| 50 | 49 | adantl 482 |
. . . . . . . . . 10
|
| 51 | 40 | difexi 4809 |
. . . . . . . . . . 11
|
| 52 | 51 | a1i 11 |
. . . . . . . . . 10
|
| 53 | 30, 50, 36, 52 | fvmptd 6288 |
. . . . . . . . 9
|
| 54 | 48, 53 | uneq12d 3768 |
. . . . . . . 8
|
| 55 | difindi 3881 |
. . . . . . . 8
| |
| 56 | 54, 55 | syl6eqr 2674 |
. . . . . . 7
|
| 57 | 43, 56 | sseq12d 3634 |
. . . . . 6
|
| 58 | 57 | ralbidva 2985 |
. . . . 5
|
| 59 | 58 | ralbidva 2985 |
. . . 4
|
| 60 | 56 | eqeq1d 2624 |
. . . . . . . 8
|
| 61 | 60 | imbi2d 330 |
. . . . . . 7
|
| 62 | 61 | ralbidva 2985 |
. . . . . 6
|
| 63 | 62 | ralbidva 2985 |
. . . . 5
|
| 64 | 63 | notbid 308 |
. . . 4
|
| 65 | 59, 64 | anbi12d 747 |
. . 3
|
| 66 | pwidg 4173 |
. . . . . 6
| |
| 67 | ssid 3624 |
. . . . . . 7
| |
| 68 | 67 | a1i 11 |
. . . . . 6
|
| 69 | eldifsni 4320 |
. . . . . . 7
| |
| 70 | 69 | neneqd 2799 |
. . . . . 6
|
| 71 | uneq1 3760 |
. . . . . . . . . 10
| |
| 72 | 71 | eqeq1d 2624 |
. . . . . . . . 9
|
| 73 | ssequn2 3786 |
. . . . . . . . 9
| |
| 74 | 72, 73 | syl6bbr 278 |
. . . . . . . 8
|
| 75 | ineq1 3807 |
. . . . . . . . . . 11
| |
| 76 | 75 | difeq2d 3728 |
. . . . . . . . . 10
|
| 77 | 76 | eqeq1d 2624 |
. . . . . . . . 9
|
| 78 | 77 | notbid 308 |
. . . . . . . 8
|
| 79 | 74, 78 | anbi12d 747 |
. . . . . . 7
|
| 80 | sseq1 3626 |
. . . . . . . 8
| |
| 81 | ineq2 3808 |
. . . . . . . . . . . . . 14
| |
| 82 | inidm 3822 |
. . . . . . . . . . . . . 14
| |
| 83 | 81, 82 | syl6eq 2672 |
. . . . . . . . . . . . 13
|
| 84 | 83 | difeq2d 3728 |
. . . . . . . . . . . 12
|
| 85 | difid 3948 |
. . . . . . . . . . . 12
| |
| 86 | 84, 85 | syl6eq 2672 |
. . . . . . . . . . 11
|
| 87 | 86 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 88 | eqcom 2629 |
. . . . . . . . . 10
| |
| 89 | 87, 88 | syl6bb 276 |
. . . . . . . . 9
|
| 90 | 89 | notbid 308 |
. . . . . . . 8
|
| 91 | 80, 90 | anbi12d 747 |
. . . . . . 7
|
| 92 | 79, 91 | rspc2ev 3324 |
. . . . . 6
|
| 93 | 66, 66, 68, 70, 92 | syl112anc 1330 |
. . . . 5
|
| 94 | rexanali 2998 |
. . . . . . 7
| |
| 95 | 94 | rexbii 3041 |
. . . . . 6
|
| 96 | rexnal 2995 |
. . . . . 6
| |
| 97 | 95, 96 | sylbb 209 |
. . . . 5
|
| 98 | 93, 97 | syl 17 |
. . . 4
|
| 99 | inss1 3833 |
. . . . . . 7
| |
| 100 | ssun1 3776 |
. . . . . . 7
| |
| 101 | 99, 100 | sstri 3612 |
. . . . . 6
|
| 102 | sscon 3744 |
. . . . . 6
| |
| 103 | 101, 102 | ax-mp 5 |
. . . . 5
|
| 104 | 103 | rgen2w 2925 |
. . . 4
|
| 105 | 98, 104 | jctil 560 |
. . 3
|
| 106 | 26, 65, 105 | rspcedvd 3317 |
. 2
|
| 107 | 17, 106 | mprg 2926 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1o 7560 df-map 7859 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |