MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rab0 Structured version   Visualization version   Unicode version

Theorem rab0 3955
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
rab0  |-  { x  e.  (/)  |  ph }  =  (/)

Proof of Theorem rab0
StepHypRef Expression
1 df-rab 2921 . 2  |-  { x  e.  (/)  |  ph }  =  { x  |  ( x  e.  (/)  /\  ph ) }
2 ab0 3951 . . 3  |-  ( { x  |  ( x  e.  (/)  /\  ph ) }  =  (/)  <->  A. x  -.  ( x  e.  (/)  /\ 
ph ) )
3 noel 3919 . . . 4  |-  -.  x  e.  (/)
43intnanr 961 . . 3  |-  -.  (
x  e.  (/)  /\  ph )
52, 4mpgbir 1726 . 2  |-  { x  |  ( x  e.  (/)  /\  ph ) }  =  (/)
61, 5eqtri 2644 1  |-  { x  e.  (/)  |  ph }  =  (/)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  rabsnif  4258  supp0  7300  sup00  8370  scott0  8749  psgnfval  17920  pmtrsn  17939  00lsp  18981  rrgval  19287  uvtxa0  26294  vtxdg0e  26370  wwlksn  26729  wspthsn  26735  iswwlksnon  26740  iswspthsnon  26741  clwwlksn  26881
  Copyright terms: Public domain W3C validator