MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnul2 Structured version   Visualization version   Unicode version

Theorem dfnul2 3917
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
Assertion
Ref Expression
dfnul2  |-  (/)  =  {
x  |  -.  x  =  x }

Proof of Theorem dfnul2
StepHypRef Expression
1 df-nul 3916 . . . 4  |-  (/)  =  ( _V  \  _V )
21eleq2i 2693 . . 3  |-  ( x  e.  (/)  <->  x  e.  ( _V  \  _V ) )
3 eldif 3584 . . 3  |-  ( x  e.  ( _V  \  _V )  <->  ( x  e. 
_V  /\  -.  x  e.  _V ) )
4 eqid 2622 . . . . 5  |-  x  =  x
5 pm3.24 926 . . . . 5  |-  -.  (
x  e.  _V  /\  -.  x  e.  _V )
64, 52th 254 . . . 4  |-  ( x  =  x  <->  -.  (
x  e.  _V  /\  -.  x  e.  _V ) )
76con2bii 347 . . 3  |-  ( ( x  e.  _V  /\  -.  x  e.  _V ) 
<->  -.  x  =  x )
82, 3, 73bitri 286 . 2  |-  ( x  e.  (/)  <->  -.  x  =  x )
98abbi2i 2738 1  |-  (/)  =  {
x  |  -.  x  =  x }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200    \ cdif 3571   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  dfnul3  3918  rab0OLD  3956  iotanul  5866  avril1  27319
  Copyright terms: Public domain W3C validator