Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabiun Structured version   Visualization version   Unicode version

Theorem rabiun 33382
Description: Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.)
Assertion
Ref Expression
rabiun  |-  { x  e.  U_ y  e.  A  B  |  ph }  =  U_ y  e.  A  {
x  e.  B  |  ph }
Distinct variable groups:    ph, y    x, A    x, y
Allowed substitution hints:    ph( x)    A( y)    B( x, y)

Proof of Theorem rabiun
StepHypRef Expression
1 eliun 4524 . . . . . 6  |-  ( x  e.  U_ y  e.  A  B  <->  E. y  e.  A  x  e.  B )
21anbi1i 731 . . . . 5  |-  ( ( x  e.  U_ y  e.  A  B  /\  ph )  <->  ( E. y  e.  A  x  e.  B  /\  ph ) )
3 r19.41v 3089 . . . . 5  |-  ( E. y  e.  A  ( x  e.  B  /\  ph )  <->  ( E. y  e.  A  x  e.  B  /\  ph ) )
42, 3bitr4i 267 . . . 4  |-  ( ( x  e.  U_ y  e.  A  B  /\  ph )  <->  E. y  e.  A  ( x  e.  B  /\  ph ) )
54abbii 2739 . . 3  |-  { x  |  ( x  e. 
U_ y  e.  A  B  /\  ph ) }  =  { x  |  E. y  e.  A  ( x  e.  B  /\  ph ) }
6 df-rab 2921 . . 3  |-  { x  e.  U_ y  e.  A  B  |  ph }  =  { x  |  (
x  e.  U_ y  e.  A  B  /\  ph ) }
7 iunab 4566 . . 3  |-  U_ y  e.  A  { x  |  ( x  e.  B  /\  ph ) }  =  { x  |  E. y  e.  A  ( x  e.  B  /\  ph ) }
85, 6, 73eqtr4i 2654 . 2  |-  { x  e.  U_ y  e.  A  B  |  ph }  =  U_ y  e.  A  {
x  |  ( x  e.  B  /\  ph ) }
9 df-rab 2921 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
109a1i 11 . . 3  |-  ( y  e.  A  ->  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) } )
1110iuneq2i 4539 . 2  |-  U_ y  e.  A  { x  e.  B  |  ph }  =  U_ y  e.  A  { x  |  (
x  e.  B  /\  ph ) }
128, 11eqtr4i 2647 1  |-  { x  e.  U_ y  e.  A  B  |  ph }  =  U_ y  e.  A  {
x  e.  B  |  ph }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   {crab 2916   U_ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-in 3581  df-ss 3588  df-iun 4522
This theorem is referenced by:  itg2addnclem2  33462
  Copyright terms: Public domain W3C validator