Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabrab Structured version   Visualization version   Unicode version

Theorem rabrab 29338
Description: Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017.)
Assertion
Ref Expression
rabrab  |-  { x  e.  { x  e.  A  |  ph }  |  ps }  =  { x  e.  A  |  ( ph  /\  ps ) }

Proof of Theorem rabrab
StepHypRef Expression
1 rabid 3116 . . . . 5  |-  ( x  e.  { x  e.  A  |  ph }  <->  ( x  e.  A  /\  ph ) )
21anbi1i 731 . . . 4  |-  ( ( x  e.  { x  e.  A  |  ph }  /\  ps )  <->  ( (
x  e.  A  /\  ph )  /\  ps )
)
3 anass 681 . . . 4  |-  ( ( ( x  e.  A  /\  ph )  /\  ps ) 
<->  ( x  e.  A  /\  ( ph  /\  ps ) ) )
42, 3bitri 264 . . 3  |-  ( ( x  e.  { x  e.  A  |  ph }  /\  ps )  <->  ( x  e.  A  /\  ( ph  /\  ps ) ) )
54abbii 2739 . 2  |-  { x  |  ( x  e. 
{ x  e.  A  |  ph }  /\  ps ) }  =  {
x  |  ( x  e.  A  /\  ( ph  /\  ps ) ) }
6 df-rab 2921 . 2  |-  { x  e.  { x  e.  A  |  ph }  |  ps }  =  { x  |  ( x  e. 
{ x  e.  A  |  ph }  /\  ps ) }
7 df-rab 2921 . 2  |-  { x  e.  A  |  ( ph  /\  ps ) }  =  { x  |  ( x  e.  A  /\  ( ph  /\  ps ) ) }
85, 6, 73eqtr4i 2654 1  |-  { x  e.  { x  e.  A  |  ph }  |  ps }  =  { x  e.  A  |  ( ph  /\  ps ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rab 2921
This theorem is referenced by:  fpwrelmapffs  29509
  Copyright terms: Public domain W3C validator