![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfor | Structured version Visualization version Unicode version |
Description: If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nf.1 |
![]() ![]() ![]() ![]() |
nf.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfor |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 385 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nf.1 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | 2 | nfn 1784 |
. . 3
![]() ![]() ![]() ![]() ![]() |
4 | nf.2 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 3, 4 | nfim 1825 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | nfxfr 1779 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
This theorem is referenced by: nf3or 1835 axi12 2600 nfun 3769 nfpr 4232 rabsnifsb 4257 disjxun 4651 fsuppmapnn0fiubex 12792 nfsum1 14420 nfsum 14421 nfcprod1 14640 nfcprod 14641 fdc1 33542 dvdsrabdioph 37374 disjinfi 39380 iundjiun 40677 |
Copyright terms: Public domain | W3C validator |