MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff14b Structured version   Visualization version   Unicode version

Theorem dff14b 6528
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
dff14b  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  ( A  \  { x } ) ( F `  x
)  =/=  ( F `
 y ) ) )
Distinct variable groups:    x, y, A    x, F, y
Allowed substitution hints:    B( x, y)

Proof of Theorem dff14b
StepHypRef Expression
1 dff14a 6527 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
x  =/=  y  -> 
( F `  x
)  =/=  ( F `
 y ) ) ) )
2 necom 2847 . . . . . . 7  |-  ( x  =/=  y  <->  y  =/=  x )
32imbi1i 339 . . . . . 6  |-  ( ( x  =/=  y  -> 
( F `  x
)  =/=  ( F `
 y ) )  <-> 
( y  =/=  x  ->  ( F `  x
)  =/=  ( F `
 y ) ) )
43ralbii 2980 . . . . 5  |-  ( A. y  e.  A  (
x  =/=  y  -> 
( F `  x
)  =/=  ( F `
 y ) )  <->  A. y  e.  A  ( y  =/=  x  ->  ( F `  x
)  =/=  ( F `
 y ) ) )
5 raldifsnb 4325 . . . . 5  |-  ( A. y  e.  A  (
y  =/=  x  -> 
( F `  x
)  =/=  ( F `
 y ) )  <->  A. y  e.  ( A  \  { x }
) ( F `  x )  =/=  ( F `  y )
)
64, 5bitri 264 . . . 4  |-  ( A. y  e.  A  (
x  =/=  y  -> 
( F `  x
)  =/=  ( F `
 y ) )  <->  A. y  e.  ( A  \  { x }
) ( F `  x )  =/=  ( F `  y )
)
76ralbii 2980 . . 3  |-  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  -> 
( F `  x
)  =/=  ( F `
 y ) )  <->  A. x  e.  A  A. y  e.  ( A  \  { x }
) ( F `  x )  =/=  ( F `  y )
)
87anbi2i 730 . 2  |-  ( ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
x  =/=  y  -> 
( F `  x
)  =/=  ( F `
 y ) ) )  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  ( A  \  {
x } ) ( F `  x )  =/=  ( F `  y ) ) )
91, 8bitri 264 1  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  ( A  \  { x } ) ( F `  x
)  =/=  ( F `
 y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    =/= wne 2794   A.wral 2912    \ cdif 3571   {csn 4177   -->wf 5884   -1-1->wf1 5885   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896
This theorem is referenced by:  f12dfv  6529  f13dfv  6530
  Copyright terms: Public domain W3C validator