![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralv | Structured version Visualization version Unicode version |
Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
ralv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2917 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | vex 3203 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | 2 | a1bi 352 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | albii 1747 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | bitr4i 267 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-v 3202 |
This theorem is referenced by: ralcom4 3224 viin 4579 issref 5509 ralcom4f 29316 hfext 32290 clsk1independent 38344 ntrneiel2 38384 ntrneik4w 38398 |
Copyright terms: Public domain | W3C validator |