| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneik4w | Structured version Visualization version Unicode version | ||
| Description: Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o |
|
| ntrnei.f |
|
| ntrnei.r |
|
| Ref | Expression |
|---|---|
| ntrneik4w |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2616 |
. . . . 5
| |
| 2 | eqcom 2629 |
. . . . 5
| |
| 3 | ralv 3219 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3bitr4i 292 |
. . . 4
|
| 5 | ssv 3625 |
. . . . . . 7
| |
| 6 | 5 | a1i 11 |
. . . . . 6
|
| 7 | vex 3203 |
. . . . . . . . 9
| |
| 8 | eldif 3584 |
. . . . . . . . 9
| |
| 9 | 7, 8 | mpbiran 953 |
. . . . . . . 8
|
| 10 | ntrnei.o |
. . . . . . . . . . . . . . . 16
| |
| 11 | ntrnei.f |
. . . . . . . . . . . . . . . 16
| |
| 12 | ntrnei.r |
. . . . . . . . . . . . . . . 16
| |
| 13 | 10, 11, 12 | ntrneiiex 38374 |
. . . . . . . . . . . . . . 15
|
| 14 | elmapi 7879 |
. . . . . . . . . . . . . . 15
| |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . . . . 14
|
| 16 | 15 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
|
| 17 | 16 | elpwid 4170 |
. . . . . . . . . . . 12
|
| 18 | 17 | sseld 3602 |
. . . . . . . . . . 11
|
| 19 | 18 | con3dimp 457 |
. . . . . . . . . 10
|
| 20 | 15 | adantr 481 |
. . . . . . . . . . . . . 14
|
| 21 | 20, 16 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
|
| 22 | 21 | elpwid 4170 |
. . . . . . . . . . . 12
|
| 23 | 22 | sseld 3602 |
. . . . . . . . . . 11
|
| 24 | 23 | con3dimp 457 |
. . . . . . . . . 10
|
| 25 | 19, 24 | 2falsed 366 |
. . . . . . . . 9
|
| 26 | 25 | ex 450 |
. . . . . . . 8
|
| 27 | 9, 26 | syl5bi 232 |
. . . . . . 7
|
| 28 | 27 | ralrimiv 2965 |
. . . . . 6
|
| 29 | 6, 28 | raldifeq 4059 |
. . . . 5
|
| 30 | 12 | adantr 481 |
. . . . . . . . 9
|
| 31 | 30 | adantr 481 |
. . . . . . . 8
|
| 32 | simpr 477 |
. . . . . . . 8
| |
| 33 | simplr 792 |
. . . . . . . 8
| |
| 34 | 10, 11, 31, 32, 33 | ntrneiel 38379 |
. . . . . . 7
|
| 35 | 16 | adantr 481 |
. . . . . . . 8
|
| 36 | 10, 11, 31, 32, 35 | ntrneiel 38379 |
. . . . . . 7
|
| 37 | 34, 36 | bibi12d 335 |
. . . . . 6
|
| 38 | 37 | ralbidva 2985 |
. . . . 5
|
| 39 | 29, 38 | bitr3d 270 |
. . . 4
|
| 40 | 4, 39 | syl5bb 272 |
. . 3
|
| 41 | 40 | ralbidva 2985 |
. 2
|
| 42 | ralcom 3098 |
. 2
| |
| 43 | 41, 42 | syl6bb 276 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
| This theorem is referenced by: ntrneik4 38399 |
| Copyright terms: Public domain | W3C validator |