Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcnveq3 Structured version   Visualization version   Unicode version

Theorem relcnveq3 34092
Description: Two ways of saying a relation is symmetric. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
relcnveq3  |-  ( Rel 
R  ->  ( R  =  `' R  <->  A. x A. y
( x R y  ->  y R x ) ) )
Distinct variable group:    x, R, y

Proof of Theorem relcnveq3
StepHypRef Expression
1 eqss 3618 . 2  |-  ( R  =  `' R  <->  ( R  C_  `' R  /\  `' R  C_  R ) )
2 cnvsym 5510 . . . . . . 7  |-  ( `' R  C_  R  <->  A. x A. y ( x R y  ->  y R x ) )
32biimpi 206 . . . . . 6  |-  ( `' R  C_  R  ->  A. x A. y ( x R y  -> 
y R x ) )
43a1d 25 . . . . 5  |-  ( `' R  C_  R  ->  ( Rel  R  ->  A. x A. y ( x R y  ->  y R x ) ) )
54adantl 482 . . . 4  |-  ( ( R  C_  `' R  /\  `' R  C_  R )  ->  ( Rel  R  ->  A. x A. y
( x R y  ->  y R x ) ) )
65com12 32 . . 3  |-  ( Rel 
R  ->  ( ( R  C_  `' R  /\  `' R  C_  R )  ->  A. x A. y
( x R y  ->  y R x ) ) )
7 dfrel2 5583 . . . . 5  |-  ( Rel 
R  <->  `' `' R  =  R
)
8 cnvss 5294 . . . . . . . 8  |-  ( `' R  C_  R  ->  `' `' R  C_  `' R
)
9 sseq1 3626 . . . . . . . 8  |-  ( `' `' R  =  R  ->  ( `' `' R  C_  `' R  <->  R  C_  `' R
) )
108, 9syl5ibcom 235 . . . . . . 7  |-  ( `' R  C_  R  ->  ( `' `' R  =  R  ->  R  C_  `' R
) )
112, 10sylbir 225 . . . . . 6  |-  ( A. x A. y ( x R y  ->  y R x )  -> 
( `' `' R  =  R  ->  R  C_  `' R ) )
1211com12 32 . . . . 5  |-  ( `' `' R  =  R  ->  ( A. x A. y ( x R y  ->  y R x )  ->  R  C_  `' R ) )
137, 12sylbi 207 . . . 4  |-  ( Rel 
R  ->  ( A. x A. y ( x R y  ->  y R x )  ->  R  C_  `' R ) )
142biimpri 218 . . . 4  |-  ( A. x A. y ( x R y  ->  y R x )  ->  `' R  C_  R )
1513, 14jca2 556 . . 3  |-  ( Rel 
R  ->  ( A. x A. y ( x R y  ->  y R x )  -> 
( R  C_  `' R  /\  `' R  C_  R ) ) )
166, 15impbid 202 . 2  |-  ( Rel 
R  ->  ( ( R  C_  `' R  /\  `' R  C_  R )  <->  A. x A. y ( x R y  -> 
y R x ) ) )
171, 16syl5bb 272 1  |-  ( Rel 
R  ->  ( R  =  `' R  <->  A. x A. y
( x R y  ->  y R x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    C_ wss 3574   class class class wbr 4653   `'ccnv 5113   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by:  relcnveq  34093
  Copyright terms: Public domain W3C validator