| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcnvtr | Structured version Visualization version Unicode version | ||
| Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) |
| Ref | Expression |
|---|---|
| relcnvtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco 5308 |
. . 3
| |
| 2 | cnvss 5294 |
. . 3
| |
| 3 | 1, 2 | syl5eqssr 3650 |
. 2
|
| 4 | cnvco 5308 |
. . . 4
| |
| 5 | cnvss 5294 |
. . . 4
| |
| 6 | sseq1 3626 |
. . . . 5
| |
| 7 | dfrel2 5583 |
. . . . . . 7
| |
| 8 | coeq1 5279 |
. . . . . . . . . 10
| |
| 9 | coeq2 5280 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | eqtrd 2656 |
. . . . . . . . 9
|
| 11 | id 22 |
. . . . . . . . 9
| |
| 12 | 10, 11 | sseq12d 3634 |
. . . . . . . 8
|
| 13 | 12 | biimpd 219 |
. . . . . . 7
|
| 14 | 7, 13 | sylbi 207 |
. . . . . 6
|
| 15 | 14 | com12 32 |
. . . . 5
|
| 16 | 6, 15 | syl6bi 243 |
. . . 4
|
| 17 | 4, 5, 16 | mpsyl 68 |
. . 3
|
| 18 | 17 | com12 32 |
. 2
|
| 19 | 3, 18 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |