MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resoprab2 Structured version   Visualization version   Unicode version

Theorem resoprab2 6757
Description: Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
resoprab2  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) } )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem resoprab2
StepHypRef Expression
1 resoprab 6756 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
2 anass 681 . . . 4  |-  ( ( ( ( x  e.  C  /\  y  e.  D )  /\  (
x  e.  A  /\  y  e.  B )
)  /\  ph )  <->  ( (
x  e.  C  /\  y  e.  D )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
3 an4 865 . . . . . 6  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( x  e.  A  /\  y  e.  B ) )  <->  ( (
x  e.  C  /\  x  e.  A )  /\  ( y  e.  D  /\  y  e.  B
) ) )
4 ssel 3597 . . . . . . . . 9  |-  ( C 
C_  A  ->  (
x  e.  C  ->  x  e.  A )
)
54pm4.71d 666 . . . . . . . 8  |-  ( C 
C_  A  ->  (
x  e.  C  <->  ( x  e.  C  /\  x  e.  A ) ) )
65bicomd 213 . . . . . . 7  |-  ( C 
C_  A  ->  (
( x  e.  C  /\  x  e.  A
)  <->  x  e.  C
) )
7 ssel 3597 . . . . . . . . 9  |-  ( D 
C_  B  ->  (
y  e.  D  -> 
y  e.  B ) )
87pm4.71d 666 . . . . . . . 8  |-  ( D 
C_  B  ->  (
y  e.  D  <->  ( y  e.  D  /\  y  e.  B ) ) )
98bicomd 213 . . . . . . 7  |-  ( D 
C_  B  ->  (
( y  e.  D  /\  y  e.  B
)  <->  y  e.  D
) )
106, 9bi2anan9 917 . . . . . 6  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  x  e.  A )  /\  (
y  e.  D  /\  y  e.  B )
)  <->  ( x  e.  C  /\  y  e.  D ) ) )
113, 10syl5bb 272 . . . . 5  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  y  e.  D )  /\  (
x  e.  A  /\  y  e.  B )
)  <->  ( x  e.  C  /\  y  e.  D ) ) )
1211anbi1d 741 . . . 4  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( ( x  e.  C  /\  y  e.  D )  /\  ( x  e.  A  /\  y  e.  B
) )  /\  ph ) 
<->  ( ( x  e.  C  /\  y  e.  D )  /\  ph ) ) )
132, 12syl5bbr 274 . . 3  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  y  e.  D )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  ph ) )  <-> 
( ( x  e.  C  /\  y  e.  D )  /\  ph ) ) )
1413oprabbidv 6709 . 2  |-  ( ( C  C_  A  /\  D  C_  B )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  C  /\  y  e.  D )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  ph ) ) }  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
151, 14syl5eq 2668 1  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574    X. cxp 5112    |` cres 5116   {coprab 6651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121  df-res 5126  df-oprab 6654
This theorem is referenced by:  resmpt2  6758
  Copyright terms: Public domain W3C validator