MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resoprab Structured version   Visualization version   Unicode version

Theorem resoprab 6756
Description: Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
resoprab  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  |`  ( A  X.  B ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Distinct variable groups:    x, y,
z, A    x, B, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem resoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 resopab 5446 . . 3  |-  ( {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  |`  ( A  X.  B ) )  =  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) ) }
2 19.42vv 1920 . . . . 5  |-  ( E. x E. y ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  ( w  e.  ( A  X.  B
)  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) ) )
3 an12 838 . . . . . . 7  |-  ( ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  ( w  =  <. x ,  y
>.  /\  ( w  e.  ( A  X.  B
)  /\  ph ) ) )
4 eleq1 2689 . . . . . . . . . 10  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  <. x ,  y
>.  e.  ( A  X.  B ) ) )
5 opelxp 5146 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
64, 5syl6bb 276 . . . . . . . . 9  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) ) )
76anbi1d 741 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  ( A  X.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
87pm5.32i 669 . . . . . . 7  |-  ( ( w  =  <. x ,  y >.  /\  (
w  e.  ( A  X.  B )  /\  ph ) )  <->  ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
93, 8bitri 264 . . . . . 6  |-  ( ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
1092exbii 1775 . . . . 5  |-  ( E. x E. y ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
112, 10bitr3i 266 . . . 4  |-  ( ( w  e.  ( A  X.  B )  /\  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
1211opabbii 4717 . . 3  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) ) }  =  { <. w ,  z
>.  |  E. x E. y ( w  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
131, 12eqtri 2644 . 2  |-  ( {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  |`  ( A  X.  B ) )  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
14 dfoprab2 6701 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
1514reseq1i 5392 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  |`  ( A  X.  B ) )  =  ( { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  |`  ( A  X.  B
) )
16 dfoprab2 6701 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
1713, 15, 163eqtr4i 2654 1  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  |`  ( A  X.  B ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   <.cop 4183   {copab 4712    X. cxp 5112    |` cres 5116   {coprab 6651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121  df-res 5126  df-oprab 6654
This theorem is referenced by:  resoprab2  6757  df1stres  29481  df2ndres  29482
  Copyright terms: Public domain W3C validator