| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu7 | Structured version Visualization version Unicode version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
| Ref | Expression |
|---|---|
| rmo4.1 |
|
| Ref | Expression |
|---|---|
| reu7 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu3 3396 |
. 2
| |
| 2 | rmo4.1 |
. . . . . . 7
| |
| 3 | equequ1 1952 |
. . . . . . . 8
| |
| 4 | equcom 1945 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl6bb 276 |
. . . . . . 7
|
| 6 | 2, 5 | imbi12d 334 |
. . . . . 6
|
| 7 | 6 | cbvralv 3171 |
. . . . 5
|
| 8 | 7 | rexbii 3041 |
. . . 4
|
| 9 | equequ1 1952 |
. . . . . . 7
| |
| 10 | 9 | imbi2d 330 |
. . . . . 6
|
| 11 | 10 | ralbidv 2986 |
. . . . 5
|
| 12 | 11 | cbvrexv 3172 |
. . . 4
|
| 13 | 8, 12 | bitri 264 |
. . 3
|
| 14 | 13 | anbi2i 730 |
. 2
|
| 15 | 1, 14 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 |
| This theorem is referenced by: cshwrepswhash1 15809 |
| Copyright terms: Public domain | W3C validator |