MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu3 Structured version   Visualization version   Unicode version

Theorem reu3 3396
Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.)
Assertion
Ref Expression
reu3  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem reu3
StepHypRef Expression
1 reurex 3160 . . 3  |-  ( E! x  e.  A  ph  ->  E. x  e.  A  ph )
2 reu6 3395 . . . 4  |-  ( E! x  e.  A  ph  <->  E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y ) )
3 biimp 205 . . . . . 6  |-  ( (
ph 
<->  x  =  y )  ->  ( ph  ->  x  =  y ) )
43ralimi 2952 . . . . 5  |-  ( A. x  e.  A  ( ph 
<->  x  =  y )  ->  A. x  e.  A  ( ph  ->  x  =  y ) )
54reximi 3011 . . . 4  |-  ( E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y )  ->  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )
62, 5sylbi 207 . . 3  |-  ( E! x  e.  A  ph  ->  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )
71, 6jca 554 . 2  |-  ( E! x  e.  A  ph  ->  ( E. x  e.  A  ph  /\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) ) )
8 rexex 3002 . . . 4  |-  ( E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y )  ->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
98anim2i 593 . . 3  |-  ( ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )  -> 
( E. x  e.  A  ph  /\  E. y A. x  e.  A  ( ph  ->  x  =  y ) ) )
10 eu3v 2498 . . . 4  |-  ( E! x ( x  e.  A  /\  ph )  <->  ( E. x ( x  e.  A  /\  ph )  /\  E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) ) )
11 df-reu 2919 . . . 4  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
12 df-rex 2918 . . . . 5  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
13 df-ral 2917 . . . . . . 7  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
14 impexp 462 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
1514albii 1747 . . . . . . 7  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
1613, 15bitr4i 267 . . . . . 6  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) )
1716exbii 1774 . . . . 5  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  <->  E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) )
1812, 17anbi12i 733 . . . 4  |-  ( ( E. x  e.  A  ph 
/\  E. y A. x  e.  A  ( ph  ->  x  =  y ) )  <->  ( E. x
( x  e.  A  /\  ph )  /\  E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) ) )
1910, 11, 183bitr4i 292 . . 3  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. y A. x  e.  A  ( ph  ->  x  =  y ) ) )
209, 19sylibr 224 . 2  |-  ( ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )  ->  E! x  e.  A  ph )
217, 20impbii 199 1  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704    e. wcel 1990   E!weu 2470   A.wral 2912   E.wrex 2913   E!wreu 2914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-cleq 2615  df-clel 2618  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920
This theorem is referenced by:  reu7  3401  2reu4a  41189
  Copyright terms: Public domain W3C validator