| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu3 | Structured version Visualization version Unicode version | ||
| Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.) |
| Ref | Expression |
|---|---|
| reu3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reurex 3160 |
. . 3
| |
| 2 | reu6 3395 |
. . . 4
| |
| 3 | biimp 205 |
. . . . . 6
| |
| 4 | 3 | ralimi 2952 |
. . . . 5
|
| 5 | 4 | reximi 3011 |
. . . 4
|
| 6 | 2, 5 | sylbi 207 |
. . 3
|
| 7 | 1, 6 | jca 554 |
. 2
|
| 8 | rexex 3002 |
. . . 4
| |
| 9 | 8 | anim2i 593 |
. . 3
|
| 10 | eu3v 2498 |
. . . 4
| |
| 11 | df-reu 2919 |
. . . 4
| |
| 12 | df-rex 2918 |
. . . . 5
| |
| 13 | df-ral 2917 |
. . . . . . 7
| |
| 14 | impexp 462 |
. . . . . . . 8
| |
| 15 | 14 | albii 1747 |
. . . . . . 7
|
| 16 | 13, 15 | bitr4i 267 |
. . . . . 6
|
| 17 | 16 | exbii 1774 |
. . . . 5
|
| 18 | 12, 17 | anbi12i 733 |
. . . 4
|
| 19 | 10, 11, 18 | 3bitr4i 292 |
. . 3
|
| 20 | 9, 19 | sylibr 224 |
. 2
|
| 21 | 7, 20 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-cleq 2615 df-clel 2618 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 |
| This theorem is referenced by: reu7 3401 2reu4a 41189 |
| Copyright terms: Public domain | W3C validator |