| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu8 | Structured version Visualization version Unicode version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
| Ref | Expression |
|---|---|
| rmo4.1 |
|
| Ref | Expression |
|---|---|
| reu8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo4.1 |
. . 3
| |
| 2 | 1 | cbvreuv 3173 |
. 2
|
| 3 | reu6 3395 |
. 2
| |
| 4 | dfbi2 660 |
. . . . 5
| |
| 5 | 4 | ralbii 2980 |
. . . 4
|
| 6 | ancom 466 |
. . . . . 6
| |
| 7 | equcom 1945 |
. . . . . . . . . 10
| |
| 8 | 7 | imbi2i 326 |
. . . . . . . . 9
|
| 9 | 8 | ralbii 2980 |
. . . . . . . 8
|
| 10 | 9 | a1i 11 |
. . . . . . 7
|
| 11 | biimt 350 |
. . . . . . . 8
| |
| 12 | df-ral 2917 |
. . . . . . . . 9
| |
| 13 | bi2.04 376 |
. . . . . . . . . 10
| |
| 14 | 13 | albii 1747 |
. . . . . . . . 9
|
| 15 | eleq1w 2684 |
. . . . . . . . . . . . 13
| |
| 16 | 15, 1 | imbi12d 334 |
. . . . . . . . . . . 12
|
| 17 | 16 | bicomd 213 |
. . . . . . . . . . 11
|
| 18 | 17 | equcoms 1947 |
. . . . . . . . . 10
|
| 19 | 18 | equsalvw 1931 |
. . . . . . . . 9
|
| 20 | 12, 14, 19 | 3bitrri 287 |
. . . . . . . 8
|
| 21 | 11, 20 | syl6bb 276 |
. . . . . . 7
|
| 22 | 10, 21 | anbi12d 747 |
. . . . . 6
|
| 23 | 6, 22 | syl5bb 272 |
. . . . 5
|
| 24 | r19.26 3064 |
. . . . 5
| |
| 25 | 23, 24 | syl6rbbr 279 |
. . . 4
|
| 26 | 5, 25 | syl5bb 272 |
. . 3
|
| 27 | 26 | rexbiia 3040 |
. 2
|
| 28 | 2, 3, 27 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-cleq 2615 df-clel 2618 df-ral 2917 df-rex 2918 df-reu 2919 |
| This theorem is referenced by: reu8nf 3516 reumodprminv 15509 grpinveu 17456 grpoideu 27363 grpoinveu 27373 cvmlift3lem2 31302 reuccatpfxs1 41434 |
| Copyright terms: Public domain | W3C validator |