MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuccats1 Structured version   Visualization version   Unicode version

Theorem reuccats1 13480
Description: A set of words having the length of a given word increased by 1 contains a unique word with the given word as prefix if there is a unique symbol which extends the given word to be a word of the set. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.)
Hypothesis
Ref Expression
reuccats1.1  |-  F/_ v X
Assertion
Ref Expression
reuccats1  |-  ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  -> 
( E! v  e.  V  ( W ++  <" v "> )  e.  X  ->  E! x  e.  X  W  =  ( x substr  <. 0 ,  ( # `  W
) >. ) ) )
Distinct variable groups:    v, V, x    v, W, x    x, X
Allowed substitution hint:    X( v)

Proof of Theorem reuccats1
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2684 . . . 4  |-  ( x  =  y  ->  (
x  e. Word  V  <->  y  e. Word  V ) )
2 fveq2 6191 . . . . 5  |-  ( x  =  y  ->  ( # `
 x )  =  ( # `  y
) )
32eqeq1d 2624 . . . 4  |-  ( x  =  y  ->  (
( # `  x )  =  ( ( # `  W )  +  1 )  <->  ( # `  y
)  =  ( (
# `  W )  +  1 ) ) )
41, 3anbi12d 747 . . 3  |-  ( x  =  y  ->  (
( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) )  <-> 
( y  e. Word  V  /\  ( # `  y
)  =  ( (
# `  W )  +  1 ) ) ) )
54cbvralv 3171 . 2  |-  ( A. x  e.  X  (
x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) )  <->  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W
)  +  1 ) ) )
6 reuccats1.1 . . . . 5  |-  F/_ v X
76nfel2 2781 . . . 4  |-  F/ v ( W ++  <" u "> )  e.  X
86nfel2 2781 . . . 4  |-  F/ v ( W ++  <" x "> )  e.  X
9 s1eq 13380 . . . . . 6  |-  ( v  =  x  ->  <" v ">  =  <" x "> )
109oveq2d 6666 . . . . 5  |-  ( v  =  x  ->  ( W ++  <" v "> )  =  ( W ++  <" x "> ) )
1110eleq1d 2686 . . . 4  |-  ( v  =  x  ->  (
( W ++  <" v "> )  e.  X  <->  ( W ++  <" x "> )  e.  X
) )
12 s1eq 13380 . . . . . 6  |-  ( x  =  u  ->  <" x ">  =  <" u "> )
1312oveq2d 6666 . . . . 5  |-  ( x  =  u  ->  ( W ++  <" x "> )  =  ( W ++  <" u "> ) )
1413eleq1d 2686 . . . 4  |-  ( x  =  u  ->  (
( W ++  <" x "> )  e.  X  <->  ( W ++  <" u "> )  e.  X
) )
157, 8, 11, 14reu8nf 3516 . . 3  |-  ( E! v  e.  V  ( W ++  <" v "> )  e.  X  <->  E. v  e.  V  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )
16 nfv 1843 . . . . 5  |-  F/ v  W  e. Word  V
17 nfv 1843 . . . . . 6  |-  F/ v ( y  e. Word  V  /\  ( # `  y
)  =  ( (
# `  W )  +  1 ) )
186, 17nfral 2945 . . . . 5  |-  F/ v A. y  e.  X  ( y  e. Word  V  /\  ( # `  y
)  =  ( (
# `  W )  +  1 ) )
1916, 18nfan 1828 . . . 4  |-  F/ v ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y
)  =  ( (
# `  W )  +  1 ) ) )
20 nfv 1843 . . . . 5  |-  F/ v  W  =  ( x substr  <. 0 ,  ( # `  W ) >. )
216, 20nfreu 3114 . . . 4  |-  F/ v E! x  e.  X  W  =  ( x substr  <.
0 ,  ( # `  W ) >. )
22 simprl 794 . . . . . 6  |-  ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y
)  =  ( (
# `  W )  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  ( W ++  <" v "> )  e.  X )
23 simp-4l 806 . . . . . . . . 9  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  ->  W  e. Word  V )
24 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  ->  x  e.  X )
2522adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  ->  ( W ++  <" v "> )  e.  X
)
26 simplrr 801 . . . . . . . . 9  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  ->  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) )
27 simp-4r 807 . . . . . . . . 9  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  ->  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W
)  +  1 ) ) )
28 reuccats1lem 13479 . . . . . . . . 9  |-  ( ( ( W  e. Word  V  /\  x  e.  X  /\  ( W ++  <" v "> )  e.  X
)  /\  ( A. u  e.  V  (
( W ++  <" u "> )  e.  X  ->  v  =  u )  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y
)  =  ( (
# `  W )  +  1 ) ) ) )  ->  ( W  =  ( x substr  <.
0 ,  ( # `  W ) >. )  ->  x  =  ( W ++ 
<" v "> ) ) )
2923, 24, 25, 26, 27, 28syl32anc 1334 . . . . . . . 8  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  ->  ( W  =  ( x substr  <.
0 ,  ( # `  W ) >. )  ->  x  =  ( W ++ 
<" v "> ) ) )
30 oveq1 6657 . . . . . . . . . . 11  |-  ( x  =  ( W ++  <" v "> )  ->  ( x substr  <. 0 ,  ( # `  W
) >. )  =  ( ( W ++  <" v "> ) substr  <. 0 ,  ( # `  W
) >. ) )
31 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  ->  W  e. Word  V )
32 s1cl 13382 . . . . . . . . . . . . . . 15  |-  ( v  e.  V  ->  <" v ">  e. Word  V )
3331, 32anim12i 590 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y
)  =  ( (
# `  W )  +  1 ) ) )  /\  v  e.  V )  ->  ( W  e. Word  V  /\  <" v ">  e. Word  V ) )
3433adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y
)  =  ( (
# `  W )  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  ( W  e. Word  V  /\  <" v ">  e. Word  V )
)
3534adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  ->  ( W  e. Word  V  /\  <" v ">  e. Word  V ) )
36 swrdccat1 13457 . . . . . . . . . . . 12  |-  ( ( W  e. Word  V  /\  <" v ">  e. Word  V )  ->  (
( W ++  <" v "> ) substr  <. 0 ,  ( # `  W
) >. )  =  W )
3735, 36syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  ->  (
( W ++  <" v "> ) substr  <. 0 ,  ( # `  W
) >. )  =  W )
3830, 37sylan9eqr 2678 . . . . . . . . . 10  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  /\  x  =  ( W ++  <" v "> )
)  ->  ( x substr  <.
0 ,  ( # `  W ) >. )  =  W )
3938eqcomd 2628 . . . . . . . . 9  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  /\  x  =  ( W ++  <" v "> )
)  ->  W  =  ( x substr  <. 0 ,  ( # `  W
) >. ) )
4039ex 450 . . . . . . . 8  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  ->  (
x  =  ( W ++ 
<" v "> )  ->  W  =  ( x substr  <. 0 ,  (
# `  W ) >. ) ) )
4129, 40impbid 202 . . . . . . 7  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X )  ->  ( W  =  ( x substr  <.
0 ,  ( # `  W ) >. )  <->  x  =  ( W ++  <" v "> )
) )
4241ralrimiva 2966 . . . . . 6  |-  ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y
)  =  ( (
# `  W )  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  A. x  e.  X  ( W  =  (
x substr  <. 0 ,  (
# `  W ) >. )  <->  x  =  ( W ++  <" v "> ) ) )
43 reu6i 3397 . . . . . 6  |-  ( ( ( W ++  <" v "> )  e.  X  /\  A. x  e.  X  ( W  =  (
x substr  <. 0 ,  (
# `  W ) >. )  <->  x  =  ( W ++  <" v "> ) ) )  ->  E! x  e.  X  W  =  ( x substr  <. 0 ,  (
# `  W ) >. ) )
4422, 42, 43syl2anc 693 . . . . 5  |-  ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y
)  =  ( (
# `  W )  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  E! x  e.  X  W  =  ( x substr  <. 0 ,  (
# `  W ) >. ) )
4544exp31 630 . . . 4  |-  ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  -> 
( v  e.  V  ->  ( ( ( W ++ 
<" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) )  ->  E! x  e.  X  W  =  ( x substr  <. 0 ,  ( # `  W
) >. ) ) ) )
4619, 21, 45rexlimd 3026 . . 3  |-  ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  -> 
( E. v  e.  V  ( ( W ++ 
<" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) )  ->  E! x  e.  X  W  =  ( x substr  <. 0 ,  ( # `  W
) >. ) ) )
4715, 46syl5bi 232 . 2  |-  ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( # `  y )  =  ( ( # `  W )  +  1 ) ) )  -> 
( E! v  e.  V  ( W ++  <" v "> )  e.  X  ->  E! x  e.  X  W  =  ( x substr  <. 0 ,  ( # `  W
) >. ) ) )
485, 47sylan2b 492 1  |-  ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  -> 
( E! v  e.  V  ( W ++  <" v "> )  e.  X  ->  E! x  e.  X  W  =  ( x substr  <. 0 ,  ( # `  W
) >. ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751   A.wral 2912   E.wrex 2913   E!wreu 2914   <.cop 4183   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303
This theorem is referenced by:  reuccats1v  13481  numclwlk2lem2f1o  27238
  Copyright terms: Public domain W3C validator