| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reupick | Structured version Visualization version Unicode version | ||
| Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.) |
| Ref | Expression |
|---|---|
| reupick |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3597 |
. . 3
| |
| 2 | 1 | ad2antrr 762 |
. 2
|
| 3 | df-rex 2918 |
. . . . . 6
| |
| 4 | df-reu 2919 |
. . . . . 6
| |
| 5 | 3, 4 | anbi12i 733 |
. . . . 5
|
| 6 | 1 | ancrd 577 |
. . . . . . . . . . 11
|
| 7 | 6 | anim1d 588 |
. . . . . . . . . 10
|
| 8 | an32 839 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | syl6ib 241 |
. . . . . . . . 9
|
| 10 | 9 | eximdv 1846 |
. . . . . . . 8
|
| 11 | eupick 2536 |
. . . . . . . . 9
| |
| 12 | 11 | ex 450 |
. . . . . . . 8
|
| 13 | 10, 12 | syl9 77 |
. . . . . . 7
|
| 14 | 13 | com23 86 |
. . . . . 6
|
| 15 | 14 | imp32 449 |
. . . . 5
|
| 16 | 5, 15 | sylan2b 492 |
. . . 4
|
| 17 | 16 | expcomd 454 |
. . 3
|
| 18 | 17 | imp 445 |
. 2
|
| 19 | 2, 18 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-rex 2918 df-reu 2919 df-in 3581 df-ss 3588 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |