| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reuxfr4d | Structured version Visualization version Unicode version | ||
| Description: Transfer existential
uniqueness from a variable |
| Ref | Expression |
|---|---|
| reuxfr4d.1 |
|
| reuxfr4d.2 |
|
| reuxfr4d.3 |
|
| Ref | Expression |
|---|---|
| reuxfr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuxfr4d.2 |
. . . . . 6
| |
| 2 | reurex 3160 |
. . . . . 6
| |
| 3 | 1, 2 | syl 17 |
. . . . 5
|
| 4 | 3 | biantrurd 529 |
. . . 4
|
| 5 | r19.41v 3089 |
. . . . . 6
| |
| 6 | reuxfr4d.3 |
. . . . . . . 8
| |
| 7 | 6 | pm5.32da 673 |
. . . . . . 7
|
| 8 | 7 | rexbidv 3052 |
. . . . . 6
|
| 9 | 5, 8 | syl5bbr 274 |
. . . . 5
|
| 10 | 9 | adantr 481 |
. . . 4
|
| 11 | 4, 10 | bitrd 268 |
. . 3
|
| 12 | 11 | reubidva 3125 |
. 2
|
| 13 | reuxfr4d.1 |
. . 3
| |
| 14 | reurmo 3161 |
. . . 4
| |
| 15 | 1, 14 | syl 17 |
. . 3
|
| 16 | 13, 15 | reuxfr3d 29329 |
. 2
|
| 17 | 12, 16 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-v 3202 |
| This theorem is referenced by: rmoxfrdOLD 29332 rmoxfrd 29333 fcnvgreu 29472 |
| Copyright terms: Public domain | W3C validator |