Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuxfr4d Structured version   Visualization version   Unicode version

Theorem reuxfr4d 29330
Description: Transfer existential uniqueness from a variable  x to another variable  y contained in expression  A. Cf. reuxfrd 4893. (Contributed by Thierry Arnoux, 7-Apr-2017.)
Hypotheses
Ref Expression
reuxfr4d.1  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
reuxfr4d.2  |-  ( (
ph  /\  x  e.  B )  ->  E! y  e.  C  x  =  A )
reuxfr4d.3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
reuxfr4d  |-  ( ph  ->  ( E! x  e.  B  ps  <->  E! y  e.  C  ch )
)
Distinct variable groups:    x, y, ph    ps, y    ch, x    x, A    x, B, y   
x, C, y
Allowed substitution hints:    ps( x)    ch( y)    A( y)

Proof of Theorem reuxfr4d
StepHypRef Expression
1 reuxfr4d.2 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  E! y  e.  C  x  =  A )
2 reurex 3160 . . . . . 6  |-  ( E! y  e.  C  x  =  A  ->  E. y  e.  C  x  =  A )
31, 2syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
43biantrurd 529 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  ( ps 
<->  ( E. y  e.  C  x  =  A  /\  ps ) ) )
5 r19.41v 3089 . . . . . 6  |-  ( E. y  e.  C  ( x  =  A  /\  ps )  <->  ( E. y  e.  C  x  =  A  /\  ps ) )
6 reuxfr4d.3 . . . . . . . 8  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
76pm5.32da 673 . . . . . . 7  |-  ( ph  ->  ( ( x  =  A  /\  ps )  <->  ( x  =  A  /\  ch ) ) )
87rexbidv 3052 . . . . . 6  |-  ( ph  ->  ( E. y  e.  C  ( x  =  A  /\  ps )  <->  E. y  e.  C  ( x  =  A  /\  ch ) ) )
95, 8syl5bbr 274 . . . . 5  |-  ( ph  ->  ( ( E. y  e.  C  x  =  A  /\  ps )  <->  E. y  e.  C  ( x  =  A  /\  ch )
) )
109adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
( E. y  e.  C  x  =  A  /\  ps )  <->  E. y  e.  C  ( x  =  A  /\  ch )
) )
114, 10bitrd 268 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( ps 
<->  E. y  e.  C  ( x  =  A  /\  ch ) ) )
1211reubidva 3125 . 2  |-  ( ph  ->  ( E! x  e.  B  ps  <->  E! x  e.  B  E. y  e.  C  ( x  =  A  /\  ch )
) )
13 reuxfr4d.1 . . 3  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
14 reurmo 3161 . . . 4  |-  ( E! y  e.  C  x  =  A  ->  E* y  e.  C  x  =  A )
151, 14syl 17 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  E* y  e.  C  x  =  A )
1613, 15reuxfr3d 29329 . 2  |-  ( ph  ->  ( E! x  e.  B  E. y  e.  C  ( x  =  A  /\  ch )  <->  E! y  e.  C  ch ) )
1712, 16bitrd 268 1  |-  ( ph  ->  ( E! x  e.  B  ps  <->  E! y  e.  C  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   E!wreu 2914   E*wrmo 2915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-v 3202
This theorem is referenced by:  rmoxfrdOLD  29332  rmoxfrd  29333  fcnvgreu  29472
  Copyright terms: Public domain W3C validator