| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexunirn | Structured version Visualization version Unicode version | ||
| Description: Restricted existential quantification over the union of the range of a function. Cf. rexrn 6361 and eluni2 4440. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
| Ref | Expression |
|---|---|
| rexunirn.1 |
|
| rexunirn.2 |
|
| Ref | Expression |
|---|---|
| rexunirn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2918 |
. . 3
| |
| 2 | 19.42v 1918 |
. . . . 5
| |
| 3 | df-rex 2918 |
. . . . . 6
| |
| 4 | 3 | anbi2i 730 |
. . . . 5
|
| 5 | 2, 4 | bitr4i 267 |
. . . 4
|
| 6 | 5 | exbii 1774 |
. . 3
|
| 7 | 1, 6 | bitr4i 267 |
. 2
|
| 8 | rexunirn.2 |
. . . . . . . 8
| |
| 9 | rexunirn.1 |
. . . . . . . . 9
| |
| 10 | 9 | elrnmpt1 5374 |
. . . . . . . 8
|
| 11 | 8, 10 | mpdan 702 |
. . . . . . 7
|
| 12 | eleq2 2690 |
. . . . . . . . 9
| |
| 13 | 12 | anbi1d 741 |
. . . . . . . 8
|
| 14 | 13 | rspcev 3309 |
. . . . . . 7
|
| 15 | 11, 14 | sylan 488 |
. . . . . 6
|
| 16 | r19.41v 3089 |
. . . . . 6
| |
| 17 | 15, 16 | sylib 208 |
. . . . 5
|
| 18 | 17 | eximi 1762 |
. . . 4
|
| 19 | df-rex 2918 |
. . . . 5
| |
| 20 | eluni2 4440 |
. . . . . . 7
| |
| 21 | 20 | anbi1i 731 |
. . . . . 6
|
| 22 | 21 | exbii 1774 |
. . . . 5
|
| 23 | 19, 22 | bitri 264 |
. . . 4
|
| 24 | 18, 23 | sylibr 224 |
. . 3
|
| 25 | 24 | exlimiv 1858 |
. 2
|
| 26 | 7, 25 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-cnv 5122 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |