Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcnvgreu Structured version   Visualization version   Unicode version

Theorem fcnvgreu 29472
Description: If the converse of a relation  A is a function, exactly one point of its graph has a given second element (that is, function value). (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
fcnvgreu  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  Y  e.  ran  A )  ->  E! p  e.  A  Y  =  ( 2nd `  p ) )
Distinct variable groups:    A, p    Y, p

Proof of Theorem fcnvgreu
Dummy variables  q 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rn 5125 . . . 4  |-  ran  A  =  dom  `' A
21eleq2i 2693 . . 3  |-  ( Y  e.  ran  A  <->  Y  e.  dom  `' A )
3 fgreu 29471 . . . 4  |-  ( ( Fun  `' A  /\  Y  e.  dom  `' A
)  ->  E! q  e.  `'  A Y  =  ( 1st `  q ) )
43adantll 750 . . 3  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  Y  e.  dom  `' A )  ->  E! q  e.  `'  A Y  =  ( 1st `  q ) )
52, 4sylan2b 492 . 2  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  Y  e.  ran  A )  ->  E! q  e.  `'  A Y  =  ( 1st `  q ) )
6 cnvcnvss 5589 . . . . . 6  |-  `' `' A  C_  A
7 cnvssrndm 5657 . . . . . . . . . . 11  |-  `' A  C_  ( ran  A  X.  dom  A )
87sseli 3599 . . . . . . . . . 10  |-  ( q  e.  `' A  -> 
q  e.  ( ran 
A  X.  dom  A
) )
9 dfdm4 5316 . . . . . . . . . . 11  |-  dom  A  =  ran  `' A
101, 9xpeq12i 5137 . . . . . . . . . 10  |-  ( ran 
A  X.  dom  A
)  =  ( dom  `' A  X.  ran  `' A )
118, 10syl6eleq 2711 . . . . . . . . 9  |-  ( q  e.  `' A  -> 
q  e.  ( dom  `' A  X.  ran  `' A ) )
12 2nd1st 7213 . . . . . . . . 9  |-  ( q  e.  ( dom  `' A  X.  ran  `' A
)  ->  U. `' {
q }  =  <. ( 2nd `  q ) ,  ( 1st `  q
) >. )
1311, 12syl 17 . . . . . . . 8  |-  ( q  e.  `' A  ->  U. `' { q }  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )
1413eqcomd 2628 . . . . . . 7  |-  ( q  e.  `' A  ->  <. ( 2nd `  q
) ,  ( 1st `  q ) >.  =  U. `' { q } )
15 relcnv 5503 . . . . . . . 8  |-  Rel  `' A
16 cnvf1olem 7275 . . . . . . . . 9  |-  ( ( Rel  `' A  /\  ( q  e.  `' A  /\  <. ( 2nd `  q
) ,  ( 1st `  q ) >.  =  U. `' { q } ) )  ->  ( <. ( 2nd `  q ) ,  ( 1st `  q
) >.  e.  `' `' A  /\  q  =  U. `' { <. ( 2nd `  q
) ,  ( 1st `  q ) >. } ) )
1716simpld 475 . . . . . . . 8  |-  ( ( Rel  `' A  /\  ( q  e.  `' A  /\  <. ( 2nd `  q
) ,  ( 1st `  q ) >.  =  U. `' { q } ) )  ->  <. ( 2nd `  q ) ,  ( 1st `  q )
>.  e.  `' `' A
)
1815, 17mpan 706 . . . . . . 7  |-  ( ( q  e.  `' A  /\  <. ( 2nd `  q
) ,  ( 1st `  q ) >.  =  U. `' { q } )  ->  <. ( 2nd `  q
) ,  ( 1st `  q ) >.  e.  `' `' A )
1914, 18mpdan 702 . . . . . 6  |-  ( q  e.  `' A  ->  <. ( 2nd `  q
) ,  ( 1st `  q ) >.  e.  `' `' A )
206, 19sseldi 3601 . . . . 5  |-  ( q  e.  `' A  ->  <. ( 2nd `  q
) ,  ( 1st `  q ) >.  e.  A
)
2120adantl 482 . . . 4  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  q  e.  `' A )  ->  <. ( 2nd `  q ) ,  ( 1st `  q
) >.  e.  A )
22 simpll 790 . . . . . . 7  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  p  e.  A )  ->  Rel  A )
23 simpr 477 . . . . . . 7  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  p  e.  A )  ->  p  e.  A )
24 relssdmrn 5656 . . . . . . . . . . 11  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )
2524adantr 481 . . . . . . . . . 10  |-  ( ( Rel  A  /\  Fun  `' A )  ->  A  C_  ( dom  A  X.  ran  A ) )
2625sselda 3603 . . . . . . . . 9  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  p  e.  A )  ->  p  e.  ( dom  A  X.  ran  A ) )
27 2nd1st 7213 . . . . . . . . 9  |-  ( p  e.  ( dom  A  X.  ran  A )  ->  U. `' { p }  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )
2826, 27syl 17 . . . . . . . 8  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  p  e.  A )  ->  U. `' { p }  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )
2928eqcomd 2628 . . . . . . 7  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  p  e.  A )  ->  <. ( 2nd `  p ) ,  ( 1st `  p
) >.  =  U. `' { p } )
30 cnvf1olem 7275 . . . . . . . 8  |-  ( ( Rel  A  /\  (
p  e.  A  /\  <.
( 2nd `  p
) ,  ( 1st `  p ) >.  =  U. `' { p } ) )  ->  ( <. ( 2nd `  p ) ,  ( 1st `  p
) >.  e.  `' A  /\  p  =  U. `' { <. ( 2nd `  p
) ,  ( 1st `  p ) >. } ) )
3130simpld 475 . . . . . . 7  |-  ( ( Rel  A  /\  (
p  e.  A  /\  <.
( 2nd `  p
) ,  ( 1st `  p ) >.  =  U. `' { p } ) )  ->  <. ( 2nd `  p ) ,  ( 1st `  p )
>.  e.  `' A )
3222, 23, 29, 31syl12anc 1324 . . . . . 6  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  p  e.  A )  ->  <. ( 2nd `  p ) ,  ( 1st `  p
) >.  e.  `' A
)
3315a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )  ->  Rel  `' A )
34 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )  ->  q  e.  `' A
)
3514ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )  -> 
<. ( 2nd `  q
) ,  ( 1st `  q ) >.  =  U. `' { q } )
3616simprd 479 . . . . . . . . . 10  |-  ( ( Rel  `' A  /\  ( q  e.  `' A  /\  <. ( 2nd `  q
) ,  ( 1st `  q ) >.  =  U. `' { q } ) )  ->  q  =  U. `' { <. ( 2nd `  q
) ,  ( 1st `  q ) >. } )
3733, 34, 35, 36syl12anc 1324 . . . . . . . . 9  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )  ->  q  =  U. `' { <. ( 2nd `  q
) ,  ( 1st `  q ) >. } )
38 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )  ->  p  =  <. ( 2nd `  q ) ,  ( 1st `  q
) >. )
3938sneqd 4189 . . . . . . . . . . 11  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )  ->  { p }  =  { <. ( 2nd `  q
) ,  ( 1st `  q ) >. } )
4039cnveqd 5298 . . . . . . . . . 10  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )  ->  `' { p }  =  `' { <. ( 2nd `  q
) ,  ( 1st `  q ) >. } )
4140unieqd 4446 . . . . . . . . 9  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )  ->  U. `' { p }  =  U. `' { <. ( 2nd `  q
) ,  ( 1st `  q ) >. } )
4228ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )  ->  U. `' { p }  =  <. ( 2nd `  p ) ,  ( 1st `  p )
>. )
4337, 41, 423eqtr2d 2662 . . . . . . . 8  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )  ->  q  =  <. ( 2nd `  p ) ,  ( 1st `  p
) >. )
4430simprd 479 . . . . . . . . . . 11  |-  ( ( Rel  A  /\  (
p  e.  A  /\  <.
( 2nd `  p
) ,  ( 1st `  p ) >.  =  U. `' { p } ) )  ->  p  =  U. `' { <. ( 2nd `  p
) ,  ( 1st `  p ) >. } )
4522, 23, 29, 44syl12anc 1324 . . . . . . . . . 10  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  p  e.  A )  ->  p  =  U. `' { <. ( 2nd `  p ) ,  ( 1st `  p
) >. } )
4645ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  q  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )  ->  p  =  U. `' { <. ( 2nd `  p
) ,  ( 1st `  p ) >. } )
47 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  q  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )  ->  q  =  <. ( 2nd `  p ) ,  ( 1st `  p
) >. )
4847sneqd 4189 . . . . . . . . . . 11  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  q  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )  ->  { q }  =  { <. ( 2nd `  p
) ,  ( 1st `  p ) >. } )
4948cnveqd 5298 . . . . . . . . . 10  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  q  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )  ->  `' { q }  =  `' { <. ( 2nd `  p
) ,  ( 1st `  p ) >. } )
5049unieqd 4446 . . . . . . . . 9  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  q  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )  ->  U. `' { q }  =  U. `' { <. ( 2nd `  p
) ,  ( 1st `  p ) >. } )
5113ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  q  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )  ->  U. `' { q }  =  <. ( 2nd `  q ) ,  ( 1st `  q
) >. )
5246, 50, 513eqtr2d 2662 . . . . . . . 8  |-  ( ( ( ( ( Rel 
A  /\  Fun  `' A
)  /\  p  e.  A )  /\  q  e.  `' A )  /\  q  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )  ->  p  =  <. ( 2nd `  q ) ,  ( 1st `  q
) >. )
5343, 52impbida 877 . . . . . . 7  |-  ( ( ( ( Rel  A  /\  Fun  `' A )  /\  p  e.  A
)  /\  q  e.  `' A )  ->  (
p  =  <. ( 2nd `  q ) ,  ( 1st `  q
) >. 
<->  q  =  <. ( 2nd `  p ) ,  ( 1st `  p
) >. ) )
5453ralrimiva 2966 . . . . . 6  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  p  e.  A )  ->  A. q  e.  `'  A ( p  = 
<. ( 2nd `  q
) ,  ( 1st `  q ) >.  <->  q  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )
)
55 eqeq2 2633 . . . . . . . . 9  |-  ( r  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >.  ->  (
q  =  r  <->  q  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )
)
5655bibi2d 332 . . . . . . . 8  |-  ( r  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >.  ->  (
( p  =  <. ( 2nd `  q ) ,  ( 1st `  q
) >. 
<->  q  =  r )  <-> 
( p  =  <. ( 2nd `  q ) ,  ( 1st `  q
) >. 
<->  q  =  <. ( 2nd `  p ) ,  ( 1st `  p
) >. ) ) )
5756ralbidv 2986 . . . . . . 7  |-  ( r  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >.  ->  ( A. q  e.  `'  A ( p  = 
<. ( 2nd `  q
) ,  ( 1st `  q ) >.  <->  q  =  r )  <->  A. q  e.  `'  A ( p  = 
<. ( 2nd `  q
) ,  ( 1st `  q ) >.  <->  q  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )
) )
5857rspcev 3309 . . . . . 6  |-  ( (
<. ( 2nd `  p
) ,  ( 1st `  p ) >.  e.  `' A  /\  A. q  e.  `'  A ( p  = 
<. ( 2nd `  q
) ,  ( 1st `  q ) >.  <->  q  =  <. ( 2nd `  p
) ,  ( 1st `  p ) >. )
)  ->  E. r  e.  `'  A A. q  e.  `'  A ( p  = 
<. ( 2nd `  q
) ,  ( 1st `  q ) >.  <->  q  =  r ) )
5932, 54, 58syl2anc 693 . . . . 5  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  p  e.  A )  ->  E. r  e.  `'  A A. q  e.  `'  A ( p  = 
<. ( 2nd `  q
) ,  ( 1st `  q ) >.  <->  q  =  r ) )
60 reu6 3395 . . . . 5  |-  ( E! q  e.  `'  A p  =  <. ( 2nd `  q ) ,  ( 1st `  q )
>. 
<->  E. r  e.  `'  A A. q  e.  `'  A ( p  = 
<. ( 2nd `  q
) ,  ( 1st `  q ) >.  <->  q  =  r ) )
6159, 60sylibr 224 . . . 4  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  p  e.  A )  ->  E! q  e.  `'  A p  =  <. ( 2nd `  q ) ,  ( 1st `  q )
>. )
62 fvex 6201 . . . . . . 7  |-  ( 2nd `  q )  e.  _V
63 fvex 6201 . . . . . . 7  |-  ( 1st `  q )  e.  _V
6462, 63op2ndd 7179 . . . . . 6  |-  ( p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >.  ->  ( 2nd `  p )  =  ( 1st `  q
) )
6564eqeq2d 2632 . . . . 5  |-  ( p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >.  ->  ( Y  =  ( 2nd `  p )  <->  Y  =  ( 1st `  q ) ) )
6665adantl 482 . . . 4  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  p  =  <. ( 2nd `  q
) ,  ( 1st `  q ) >. )  ->  ( Y  =  ( 2nd `  p )  <-> 
Y  =  ( 1st `  q ) ) )
6721, 61, 66reuxfr4d 29330 . . 3  |-  ( ( Rel  A  /\  Fun  `' A )  ->  ( E! p  e.  A  Y  =  ( 2nd `  p )  <->  E! q  e.  `'  A Y  =  ( 1st `  q ) ) )
6867adantr 481 . 2  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  Y  e.  ran  A )  -> 
( E! p  e.  A  Y  =  ( 2nd `  p )  <-> 
E! q  e.  `'  A Y  =  ( 1st `  q ) ) )
695, 68mpbird 247 1  |-  ( ( ( Rel  A  /\  Fun  `' A )  /\  Y  e.  ran  A )  ->  E! p  e.  A  Y  =  ( 2nd `  p ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914    C_ wss 3574   {csn 4177   <.cop 4183   U.cuni 4436    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   Rel wrel 5119   Fun wfun 5882   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  gsummpt2co  29780
  Copyright terms: Public domain W3C validator