| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcnvgreu | Structured version Visualization version Unicode version | ||
| Description: If the converse of a
relation |
| Ref | Expression |
|---|---|
| fcnvgreu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5125 |
. . . 4
| |
| 2 | 1 | eleq2i 2693 |
. . 3
|
| 3 | fgreu 29471 |
. . . 4
| |
| 4 | 3 | adantll 750 |
. . 3
|
| 5 | 2, 4 | sylan2b 492 |
. 2
|
| 6 | cnvcnvss 5589 |
. . . . . 6
| |
| 7 | cnvssrndm 5657 |
. . . . . . . . . . 11
| |
| 8 | 7 | sseli 3599 |
. . . . . . . . . 10
|
| 9 | dfdm4 5316 |
. . . . . . . . . . 11
| |
| 10 | 1, 9 | xpeq12i 5137 |
. . . . . . . . . 10
|
| 11 | 8, 10 | syl6eleq 2711 |
. . . . . . . . 9
|
| 12 | 2nd1st 7213 |
. . . . . . . . 9
| |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
|
| 14 | 13 | eqcomd 2628 |
. . . . . . 7
|
| 15 | relcnv 5503 |
. . . . . . . 8
| |
| 16 | cnvf1olem 7275 |
. . . . . . . . 9
| |
| 17 | 16 | simpld 475 |
. . . . . . . 8
|
| 18 | 15, 17 | mpan 706 |
. . . . . . 7
|
| 19 | 14, 18 | mpdan 702 |
. . . . . 6
|
| 20 | 6, 19 | sseldi 3601 |
. . . . 5
|
| 21 | 20 | adantl 482 |
. . . 4
|
| 22 | simpll 790 |
. . . . . . 7
| |
| 23 | simpr 477 |
. . . . . . 7
| |
| 24 | relssdmrn 5656 |
. . . . . . . . . . 11
| |
| 25 | 24 | adantr 481 |
. . . . . . . . . 10
|
| 26 | 25 | sselda 3603 |
. . . . . . . . 9
|
| 27 | 2nd1st 7213 |
. . . . . . . . 9
| |
| 28 | 26, 27 | syl 17 |
. . . . . . . 8
|
| 29 | 28 | eqcomd 2628 |
. . . . . . 7
|
| 30 | cnvf1olem 7275 |
. . . . . . . 8
| |
| 31 | 30 | simpld 475 |
. . . . . . 7
|
| 32 | 22, 23, 29, 31 | syl12anc 1324 |
. . . . . 6
|
| 33 | 15 | a1i 11 |
. . . . . . . . . 10
|
| 34 | simplr 792 |
. . . . . . . . . 10
| |
| 35 | 14 | ad2antlr 763 |
. . . . . . . . . 10
|
| 36 | 16 | simprd 479 |
. . . . . . . . . 10
|
| 37 | 33, 34, 35, 36 | syl12anc 1324 |
. . . . . . . . 9
|
| 38 | simpr 477 |
. . . . . . . . . . . 12
| |
| 39 | 38 | sneqd 4189 |
. . . . . . . . . . 11
|
| 40 | 39 | cnveqd 5298 |
. . . . . . . . . 10
|
| 41 | 40 | unieqd 4446 |
. . . . . . . . 9
|
| 42 | 28 | ad2antrr 762 |
. . . . . . . . 9
|
| 43 | 37, 41, 42 | 3eqtr2d 2662 |
. . . . . . . 8
|
| 44 | 30 | simprd 479 |
. . . . . . . . . . 11
|
| 45 | 22, 23, 29, 44 | syl12anc 1324 |
. . . . . . . . . 10
|
| 46 | 45 | ad2antrr 762 |
. . . . . . . . 9
|
| 47 | simpr 477 |
. . . . . . . . . . . 12
| |
| 48 | 47 | sneqd 4189 |
. . . . . . . . . . 11
|
| 49 | 48 | cnveqd 5298 |
. . . . . . . . . 10
|
| 50 | 49 | unieqd 4446 |
. . . . . . . . 9
|
| 51 | 13 | ad2antlr 763 |
. . . . . . . . 9
|
| 52 | 46, 50, 51 | 3eqtr2d 2662 |
. . . . . . . 8
|
| 53 | 43, 52 | impbida 877 |
. . . . . . 7
|
| 54 | 53 | ralrimiva 2966 |
. . . . . 6
|
| 55 | eqeq2 2633 |
. . . . . . . . 9
| |
| 56 | 55 | bibi2d 332 |
. . . . . . . 8
|
| 57 | 56 | ralbidv 2986 |
. . . . . . 7
|
| 58 | 57 | rspcev 3309 |
. . . . . 6
|
| 59 | 32, 54, 58 | syl2anc 693 |
. . . . 5
|
| 60 | reu6 3395 |
. . . . 5
| |
| 61 | 59, 60 | sylibr 224 |
. . . 4
|
| 62 | fvex 6201 |
. . . . . . 7
| |
| 63 | fvex 6201 |
. . . . . . 7
| |
| 64 | 62, 63 | op2ndd 7179 |
. . . . . 6
|
| 65 | 64 | eqeq2d 2632 |
. . . . 5
|
| 66 | 65 | adantl 482 |
. . . 4
|
| 67 | 21, 61, 66 | reuxfr4d 29330 |
. . 3
|
| 68 | 67 | adantr 481 |
. 2
|
| 69 | 5, 68 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: gsummpt2co 29780 |
| Copyright terms: Public domain | W3C validator |