| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reuxfr3d | Structured version Visualization version Unicode version | ||
| Description: Transfer existential
uniqueness from a variable |
| Ref | Expression |
|---|---|
| reuxfr3d.1 |
|
| reuxfr3d.2 |
|
| Ref | Expression |
|---|---|
| reuxfr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuxfr3d.2 |
. . . . . . 7
| |
| 2 | rmoan 3406 |
. . . . . . 7
| |
| 3 | 1, 2 | syl 17 |
. . . . . 6
|
| 4 | ancom 466 |
. . . . . . 7
| |
| 5 | 4 | rmobii 3133 |
. . . . . 6
|
| 6 | 3, 5 | sylib 208 |
. . . . 5
|
| 7 | 6 | ralrimiva 2966 |
. . . 4
|
| 8 | 2reuswap 3410 |
. . . 4
| |
| 9 | 7, 8 | syl 17 |
. . 3
|
| 10 | 2reuswap2 29328 |
. . . 4
| |
| 11 | moeq 3382 |
. . . . . . 7
| |
| 12 | 11 | moani 2525 |
. . . . . 6
|
| 13 | ancom 466 |
. . . . . . . 8
| |
| 14 | an12 838 |
. . . . . . . 8
| |
| 15 | 13, 14 | bitri 264 |
. . . . . . 7
|
| 16 | 15 | mobii 2493 |
. . . . . 6
|
| 17 | 12, 16 | mpbi 220 |
. . . . 5
|
| 18 | 17 | a1i 11 |
. . . 4
|
| 19 | 10, 18 | mprg 2926 |
. . 3
|
| 20 | 9, 19 | impbid1 215 |
. 2
|
| 21 | reuxfr3d.1 |
. . . 4
| |
| 22 | biidd 252 |
. . . . 5
| |
| 23 | 22 | ceqsrexv 3336 |
. . . 4
|
| 24 | 21, 23 | syl 17 |
. . 3
|
| 25 | 24 | reubidva 3125 |
. 2
|
| 26 | 20, 25 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-v 3202 |
| This theorem is referenced by: reuxfr4d 29330 |
| Copyright terms: Public domain | W3C validator |