MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revfv Structured version   Visualization version   Unicode version

Theorem revfv 13512
Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Assertion
Ref Expression
revfv  |-  ( ( W  e. Word  A  /\  X  e.  ( 0..^ ( # `  W
) ) )  -> 
( (reverse `  W
) `  X )  =  ( W `  ( ( ( # `  W )  -  1 )  -  X ) ) )

Proof of Theorem revfv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 revval 13509 . . 3  |-  ( W  e. Word  A  ->  (reverse `  W )  =  ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) )
21fveq1d 6193 . 2  |-  ( W  e. Word  A  ->  (
(reverse `  W ) `  X )  =  ( ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) `
 X ) )
3 oveq2 6658 . . . 4  |-  ( x  =  X  ->  (
( ( # `  W
)  -  1 )  -  x )  =  ( ( ( # `  W )  -  1 )  -  X ) )
43fveq2d 6195 . . 3  |-  ( x  =  X  ->  ( W `  ( (
( # `  W )  -  1 )  -  x ) )  =  ( W `  (
( ( # `  W
)  -  1 )  -  X ) ) )
5 eqid 2622 . . 3  |-  ( x  e.  ( 0..^ (
# `  W )
)  |->  ( W `  ( ( ( # `  W )  -  1 )  -  x ) ) )  =  ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) )
6 fvex 6201 . . 3  |-  ( W `
 ( ( (
# `  W )  -  1 )  -  X ) )  e. 
_V
74, 5, 6fvmpt 6282 . 2  |-  ( X  e.  ( 0..^ (
# `  W )
)  ->  ( (
x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) `
 X )  =  ( W `  (
( ( # `  W
)  -  1 )  -  X ) ) )
82, 7sylan9eq 2676 1  |-  ( ( W  e. Word  A  /\  X  e.  ( 0..^ ( # `  W
) ) )  -> 
( (reverse `  W
) `  X )  =  ( W `  ( ( ( # `  W )  -  1 )  -  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    - cmin 10266  ..^cfzo 12465   #chash 13117  Word cword 13291  reversecreverse 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-reverse 13305
This theorem is referenced by:  revs1  13514  revccat  13515  revrev  13516  revco  13580
  Copyright terms: Public domain W3C validator