MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrep6 Structured version   Visualization version   Unicode version

Theorem zfrep6 7134
Description: A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4781 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 4771. (Contributed by NM, 10-Oct-2003.)
Assertion
Ref Expression
zfrep6  |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Distinct variable groups:    ph, w    x, y, z, w
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem zfrep6
StepHypRef Expression
1 euex 2494 . . . . . . 7  |-  ( E! y ph  ->  E. y ph )
21ralimi 2952 . . . . . 6  |-  ( A. x  e.  z  E! y ph  ->  A. x  e.  z  E. y ph )
3 rabid2 3118 . . . . . 6  |-  ( z  =  { x  e.  z  |  E. y ph }  <->  A. x  e.  z  E. y ph )
42, 3sylibr 224 . . . . 5  |-  ( A. x  e.  z  E! y ph  ->  z  =  { x  e.  z  |  E. y ph }
)
5 19.42v 1918 . . . . . . 7  |-  ( E. y ( x  e.  z  /\  ph )  <->  ( x  e.  z  /\  E. y ph ) )
65abbii 2739 . . . . . 6  |-  { x  |  E. y ( x  e.  z  /\  ph ) }  =  {
x  |  ( x  e.  z  /\  E. y ph ) }
7 dmopab 5335 . . . . . 6  |-  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  { x  |  E. y ( x  e.  z  /\  ph ) }
8 df-rab 2921 . . . . . 6  |-  { x  e.  z  |  E. y ph }  =  {
x  |  ( x  e.  z  /\  E. y ph ) }
96, 7, 83eqtr4i 2654 . . . . 5  |-  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  { x  e.  z  |  E. y ph }
104, 9syl6reqr 2675 . . . 4  |-  ( A. x  e.  z  E! y ph  ->  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  z )
11 vex 3203 . . . 4  |-  z  e. 
_V
1210, 11syl6eqel 2709 . . 3  |-  ( A. x  e.  z  E! y ph  ->  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
13 eumo 2499 . . . . . . 7  |-  ( E! y ph  ->  E* y ph )
1413imim2i 16 . . . . . 6  |-  ( ( x  e.  z  ->  E! y ph )  -> 
( x  e.  z  ->  E* y ph ) )
15 moanimv 2531 . . . . . 6  |-  ( E* y ( x  e.  z  /\  ph )  <->  ( x  e.  z  ->  E* y ph ) )
1614, 15sylibr 224 . . . . 5  |-  ( ( x  e.  z  ->  E! y ph )  ->  E* y ( x  e.  z  /\  ph )
)
1716alimi 1739 . . . 4  |-  ( A. x ( x  e.  z  ->  E! y ph )  ->  A. x E* y ( x  e.  z  /\  ph )
)
18 df-ral 2917 . . . 4  |-  ( A. x  e.  z  E! y ph  <->  A. x ( x  e.  z  ->  E! y ph ) )
19 funopab 5923 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } 
<-> 
A. x E* y
( x  e.  z  /\  ph ) )
2017, 18, 193imtr4i 281 . . 3  |-  ( A. x  e.  z  E! y ph  ->  Fun  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } )
21 funrnex 7133 . . 3  |-  ( dom 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  e.  _V  ->  ( Fun  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
)
2212, 20, 21sylc 65 . 2  |-  ( A. x  e.  z  E! y ph  ->  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
23 nfra1 2941 . . 3  |-  F/ x A. x  e.  z  E! y ph
2410eleq2d 2687 . . . 4  |-  ( A. x  e.  z  E! y ph  ->  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  <->  x  e.  z ) )
25 opabid 4982 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } 
<->  ( x  e.  z  /\  ph ) )
26 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
27 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
2826, 27opelrn 5357 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  ->  y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } )
2925, 28sylbir 225 . . . . . . . 8  |-  ( ( x  e.  z  /\  ph )  ->  y  e.  ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } )
3029ex 450 . . . . . . 7  |-  ( x  e.  z  ->  ( ph  ->  y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } ) )
3130impac 651 . . . . . 6  |-  ( ( x  e.  z  /\  ph )  ->  ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
3231eximi 1762 . . . . 5  |-  ( E. y ( x  e.  z  /\  ph )  ->  E. y ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
337abeq2i 2735 . . . . 5  |-  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  <->  E. y
( x  e.  z  /\  ph ) )
34 df-rex 2918 . . . . 5  |-  ( E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph  <->  E. y ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
3532, 33, 343imtr4i 281 . . . 4  |-  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
3624, 35syl6bir 244 . . 3  |-  ( A. x  e.  z  E! y ph  ->  ( x  e.  z  ->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
)
3723, 36ralrimi 2957 . 2  |-  ( A. x  e.  z  E! y ph  ->  A. x  e.  z  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
38 nfopab1 4719 . . . . . 6  |-  F/_ x { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
3938nfrn 5368 . . . . 5  |-  F/_ x ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4039nfeq2 2780 . . . 4  |-  F/ x  w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }
41 nfcv 2764 . . . . 5  |-  F/_ y
w
42 nfopab2 4720 . . . . . 6  |-  F/_ y { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4342nfrn 5368 . . . . 5  |-  F/_ y ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4441, 43rexeqf 3135 . . . 4  |-  ( w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ( E. y  e.  w  ph  <->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph ) )
4540, 44ralbid 2983 . . 3  |-  ( w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ( A. x  e.  z  E. y  e.  w  ph  <->  A. x  e.  z  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
)
4645spcegv 3294 . 2  |-  ( ran 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  e.  _V  ->  ( A. x  e.  z  E. y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph  ->  E. w A. x  e.  z  E. y  e.  w  ph ) )
4722, 37, 46sylc 65 1  |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   E*wmo 2471   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   <.cop 4183   {copab 4712   dom cdm 5114   ran crn 5115   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  bnj865  30993
  Copyright terms: Public domain W3C validator